| 研究生: |
尤冠霖 Guan-Lin You |
|---|---|
| 論文名稱: |
探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響 Compaction and Decompaction of DNA by Cationic and Anionic Gemini Surfactants of Varying Spacer Lengths |
| 指導教授: |
陳儀帆
Yi-Fan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 去氧核醣核酸 、雙子型界面活性劑 、壓實 、解壓實 |
| 外文關鍵詞: | DNA, gemini surfactant, compaction, de-compaction |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳遞DNA至人體細胞核以進行基因治療的過程中,DNA必須被壓實以降低遭受酵素分解或環境影響的機會,而因壓實而縮小之DNA亦較為容易進入至細胞核中。反之,DNA的被解壓實則是基因治療中的另一個必要步驟,以使DNA得以恢復原先之構型,並進行其基因表現之功能。傳統的單鏈型陽離子或陰離子界面活性劑對DNA的壓實與解壓實效果及其作為非病毒型基因載體的可能性經常是許多研究探討的主題。基於此一研究趨勢,本研究發展出一個以雙子型界面活性劑為基礎的新穎DNA壓實/解壓實系統。雙子型界面活性劑是由一條分子鏈將兩個單鏈型界面活性劑結合為一的一類界面活性劑;此一特殊的分子結構,使其比單鏈型界面活性劑具有更好的表面活性,並可藉由對橋接分子鏈的改變調整其分子結構及性質。在本研究中,我們使用了紫外光分光光譜儀、圓二色光譜儀、原子力顯微鏡及小角度X光散射等技術,探討不同的橋接分子鏈長度如何影響雙子型界面活性劑對於DNA壓實與解壓實之效果及其作用的機制。實驗數據顯示,陽離子與陰離子雙子型界面活性劑各自具有使DNA壓實與解壓實之能力,且橋接分子鏈之長度為6個碳數的雙子型界面活性劑對於DNA的壓實與解壓實效果皆較長度為3個碳數之雙子型界面活性劑為佳。我們推測,DNA壓實效果上的差異應與陽離子雙子型界面活性劑分子的離子化程度及其與DNA的複合自組裝結構的不同有關;而在DNA解壓實上的差異,我們則推測與陰離子雙子型界面活性劑的疏水性以及溶液中陰離子雙子型界面活性劑的帶電荷量有關。本研究因此以分子特性及超分子自組裝結構的角度,解釋了雙子型界面活性劑於DNA壓實/解壓實上的作用機制。
For an efficient delivey into the nuclei of human cells, the therapeutic DNAs of a gene therapy need to be compacted to protect them from the enzymatic hydrolysis or external chemical/biochemical stresses; the reduced DNA sizes by compaction also facilitate their delivery to the nuclei. On the other hand, decompaction of the compacted DNAs, which restores the DNAs to their native conformations and re-activates the gene expression, is a prerequisite for an effective gene therapy. Conventional cationic and anionic surfactants are often studied for their respective capabilities to compact and de-compact DNAs, with their potential of being a safe non-virus gene delivery system evaluated. Following this research interst, the present study develops a novel DNA compaction/decompaction system based on gemini surfactants. Gemini surfactants are dimers of two conventional surfactant molecules connected with a spacer. Due to this unique molecular structure, gemini surfactants commonly display superior surface activities than their conventional counterparts, with their molecular structure and material properties tunable via modulating the spacer. Here, we synthesize cationic and anionic gemini surfactants of varying spacer lengths to investigate how and why the change in the molecular structures of the gemini surfactants affects their DNA compaction/decompaction efficacy by using UV-vis spectrophotometer, dynamic light scattering, atomic force microscopy, circular dichroism and small-angle x-ray scattering. The gemini surfactants are proven competent in the DNA compact/decompaction, and the gemini surfactants with the 6-carbon long spacer are observed to display higher DNA compaction/decompaction efficiency than the one with the 3-carbon long spacer. The discrepancy in the DNA compaction efficacy might arise from the differences in the ionization degrees of the cationic gemini surfactants and in the self-assembled structures of the DNA-surfactant complexes. For the DNA decompaction, the difference in hydrophobicity and ionization of the anionic gemini surfactants may potentially lead to the difference in efficacy. The present study therefore explains the mechanisms underlying the DNA compaction/decompaction by gemini surfactants in terms of molecular property and supramolecular structure.
1. Friedmann, T., A brief history of gene therapy. Nat. Genet. 1992, 2 (2), 93-98.
2. Ginn, S. L.; Alexander, I. E.; Edelstein, M. L.; Abedi, M. R.; Wixon, J., Gene therapy clinical trials worldwide to 2012 an update. J. Gene Med. 2013, 15 (2), 65-77.
3. Xu, Q.; Wang, L.; Xing, F., Synthesis and properties of dissymmetric gemini surfactants. J. Surfactants Deterg. 2011, 14 (1), 85-90.
4. Dias, R. S.; Lindman, B.; Miguel, M. G., Compaction and decompaction of DNA in the presence of catanionic amphiphile mixtures. J. Phys. Chem. B 2002, 106 (48), 12608-12612.
5. Boyer, R. F., Concepts in biochemistry. John Wiley & Sons: New York, 2006.
6. Simonds, S. Video & Material 10: DNA & RNA. https://www.sophia.org/ (accessed April 27, 2016).
7. Ussery, D. W., DNA Structure: A-, B- and Z-DNA Helix Families. John Wiley & Sons: 2002.
8. Benjamin, P. A., Genetics: A Conceptual Approach 2ed.; W. H. Freeman and Company: New York, 2005.
9. Olins, D. E.; Olins, A. L., Chromatin history: our view from the bridge. Nat. Rev. Mol. Cell Biol. 2003, 4 (10), 809-814.
10. Zhou, T.; Llizo, A.; Wang, C.; Xu, G.; Yang, Y., Nanostructure-induced DNA condensation. Nanoscale 2013, 5 (18), 8288-8306.
11. Schlabach, M. R.; Hu, J. K.; Li, M.; Elledge, S. J., Synthetic design of strong promoters. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (6), 2538-2543.
12. Luo, D.; Saltzman, W. M., Synthetic DNA delivery systems. Nat. Biotechnol. 2000, 18 (1), 33-37.
13. Estevez-Torres, A.; Baigl, D., DNA compaction: fundamentals and applications. Soft Matter 2011, 7 (15), 6746-6756.
14. Niidome, T.; Huang, L., Gene therapy progress and prospects: Nonviral vectors. Gene Ther. 2002, 9 (24), 1647-1652.
15. Robbins, P. D.; Ghivizzani, S. C., Viral vectors for gene therapy. Pharmacol. Ther. 1998, 80 (1), 35-47.
16. Wilson, R. W.; Bloomfield, V. A., Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry 1979, 18 (11), 2192-2196.
17. Yamasaki, Y.; Yoshikawa, K., Higher Order Structure of DNA Controlled by the Redox State of Fe2+/Fe3+. J. Am. Chem. Soc. 1997, 119 (44), 10573-10578.
18. Arakawa, H.; Ahmad, R.; Naoui, M.; Tajmir-Riahi, H. A., A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions - Evidence for the guanine N-7-chromium-phosphate chelate formation. J. Biol. Chem. 2000, 275 (14), 10150-10153.
19. Kankia, B. I.; Buckin, V.; Bloomfield, V. A., Hexamminecobalt(III)-induced condensation of calf thymus DNA: circular dichroism and hydration measurements. Nucleic Acids Res. 2001, 29 (13), 2795-2801.
20. Deng, H.; Bloomfield, V. A., Structural effects of cobalt-amine compounds on DNA condensation. Biophys. J. 1999, 77 (3), 1556-1561.
21. (a) Vijayanathan, V.; Thomas, T.; Shirahata, A.; Thomas, T. J., DNA Condensation by Polyamines: A Laser Light Scattering Study of Structural Effects. Biochemistry 2001, 40 (45), 13644-13651; (b) Baigl, D.; Yoshikawa, K., Dielectric Control of Counterion-Induced Single-Chain Folding Transition of DNA. Biophys. J. 2005, 88 (5), 3486-3493; (c) Thomas, T. J.; Kulkarni, G. D.; Greenfield, N. J.; Shirahata, A.; Thomas, T., Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA. Biochem. J. 1996, 319 (2), 591-599; (d) Yoshikawa, Y.; Yoshikawa, K.; Kanbe, T., Formation of a Giant Toroid from Long Duplex DNA. Langmuir 1999, 15 (12), 4085-4088.
22. Kulkarni, C. V., Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale 2012, 4 (19), 5779-5791.
23. (a) Koltover, I.; Salditt, T.; Safinya, C., Phase diagram, stability, and overcharging of lamellar cationic lipid–DNA self-assembled complexes. Biophys. J. 1999, 77 (2), 915-924; (b) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 1998, 281 (5373), 78-81; (c) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R., Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 1997, 275 (5301), 810-814.
24. Safinya, C.; Ewert, K.; Leal, C., Cationic liposome–nucleic acid complexes: liquid crystal phases with applications in gene therapy. Liq. Cryst. 2011, 38 (11-12), 1715-1723.
25. Ewert, K.; Slack, N. L.; Ahmad, A.; Evans, H. M.; Lin, A. J.; Samuel, C. E.; Safinya, C. R., Cationic lipid-DNA complexes for gene therapy: understanding the relationship between complex structure and gene delivery pathways at the molecular level. Curr. Med. Chem. 2004, 11 (2), 133-149.
26. Du, Z.; Munye, M. M.; Tagalakis, A. D.; Manunta, M. D.; Hart, S. L., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci. Rep. 2014, 4.
27. Hoekstra, D.; Rejman, J.; Wasungu, L.; Shi, F.; Zuhorn, I., Gene delivery by cationic lipids: in and out of an endosome. Biochem. Soc. Trans. 2007, 35 (1), 68-71.
28. Zuhorn, I. S.; Engberts, J. B.; Hoekstra, D., Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur. Biophys. J. 2007, 36 (4-5), 349-362.
29. Auvray, X.; Petipas, C.; Anthore, R.; Rico, I.; Lattes, A., X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol. J. Phys. Chem. 1989, 93 (21), 7458-7464.
30. (a) Grueso, E.; Cerrillos, C.; Hidalgo, J.; Lopez-Cornejo, P., Compaction and decompaction of DNA induced by the cationic surfactant CTAB. Langmuir 2012, 28 (30), 10968-10979; (b) Dias, R. S.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B., Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study. J. Phys. Chem. B 2005, 109 (20), 10458-10463.
31. (a) Mel'nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K., Discrete coil-globule transition of large DNA induced by cationic surfactant. J. Am. Chem. Soc. 1995, 117 (9), 2401-2408; (b) Mel'nikova, Y. S.; Lindman, B., pH-controlled DNA condensation in the presence of dodecyldimethylamine oxide. Langmuir 2000, 16 (14), 5871-5878; (c) González-Pérez, A.; Dias, R. S.; Nylander, T.; Lindman, B., Cyclodextrin− Surfactant Complex: A New Route in DNA Decompaction. Biomacromolecules 2008, 9 (3), 772-775.
32. (a) Miguel, M. G.; Pais, A. A.; Dias, R. S.; Rosa, M.; Lindman, B., DNA–cationic amphiphile interactions. Colloids Surf. Physicochem. Eng. Aspects 2003, 228 (1), 43-55; (b) Mezei, A.; Pons, R.; Morán, M. C., The nanostructure of surfactant–DNA complexes with different arrangements. Colloids Surf. B. Biointerfaces 2013, 111, 663-671.
33. Rudiuk, S.; Yoshikawa, K.; Baigl, D., Enhancement of DNA compaction by negatively charged nanoparticles: Effect of nanoparticle size and surfactant chain length. J. Colloid Interface Sci. 2012, 368 (1), 372-377.
34. Sergeyev, V. G.; Mikhailenko, S. V.; Pyshkina, O. A.; Yaminsky, I. V.; Yoshikawa, K., How does alcohol dissolve the complex of DNA with a cationic surfactant? J. Am. Chem. Soc. 1999, 121 (9), 1780-1785.
35. Hsu, W.-L.; Chen, H.-L.; Liou, W.; Lin, H.-K.; Liu, W.-L., Mesomorphic complexes of DNA with the mixtures of a cationic surfactant and a neutral lipid. Langmuir 2005, 21 (21), 9426-9431.
36. Espert, A.; Klitzing, R. v.; Poulin, P.; Colin, A.; Zana, R.; Langevin, D., Behavior of soap films stabilized by a cationic dimeric surfactant. Langmuir 1998, 14 (15), 4251-4260.
37. Zana, R.; Benrraou, M.; Rueff, R., Alkanediyl-. alpha.,. omega.-bis (dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 1991, 7 (6), 1072-1075.
38. Badea, I.; Verrall, R.; Baca‐Estrada, M.; Tikoo, S.; Rosenberg, A.; Kumar, P.; Foldvari, M., In vivo cutaneous interferon‐γ gene delivery using novel dicationic (gemini) surfactant–plasmid complexes. J. Gene Med. 2005, 7 (9), 1200-1214.
39. Dash, P. R.; Toncheva, V.; Schacht, E.; Seymour, L. W., Synthetic polymers for vectorial delivery of DNA: characterisation of polymer-DNA complexes by photon correlation spectroscopy and stability to nuclease degradation and disruption by polyanions in vitro. J. Controlled Release 1997, 48 (2-3), 269-276.
40. Cao, M.; Deng, M.; Wang, X.-L.; Wang, Y., Decompaction of cationic gemini surfactant-induced DNA condensates by β-cyclodextrin or anionic surfactant. J. Phys. Chem. B 2008, 112 (43), 13648-13654.
41. Raghavan, S. R.; Fritz, G.; Kaler, E. W., Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 2002, 18 (10), 3797-3803.
42. Yeh, Y.-Q.; Chen, B.-C.; Lin, H.-P.; Tang, C.-Y., Synthesis of hollow silica spheres with mesostructured shell using cationic-anionic-neutral block copolymer ternary surfactants. Langmuir 2006, 22 (1), 6-9.
43. Zana, R.; Benrraou, M.; Rueff, R., Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 1991, 7 (6), 1072-1075.
44. Sorenson, G. P.; Coppage, K. L.; Mahanthappa, M. K., Unusually stable aqueous lyotropic gyroid phases from gemini dicarboxylate surfactants. J. Am. Chem. Soc. 2011, 133 (38), 14928-14931.
45. Cavanagh, J.; Fairbrother, W. J.; Palmer III, A. G.; Skelton, N. J., Protein NMR spectroscopy: principles and practice. Academic Press: 1995.
46. Dagan, S.; Amirav, A., Electron impact mass spectrometry of alkanes in supersonic molecular beams. J. Am. Soc. Mass Spectrom. 1995, 6 (2), 120-131.
47. Barber, M.; Bordoli, R. S.; Elliott, G. J.; Sedgwick, R. D.; Tyler, A. N., Fast atom bombardment mass spectrometry. Anal. Chem. 1982, 54 (4), 645A-657A.
48. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
49. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Anal. Chem. 1991, 63 (24), 1193A-1203A.
50. Broadhurst, D.; Goodacre, R.; Jones, A.; Rowland, J. J.; Kell, D. B., Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal. Chim. Acta 1997, 348 (1), 71-86.
51. Jonsson, G. P.; Hedin, A. B.; Hakansson, P. L.; Sundqvist, B. U. R.; Saeve, B. G. S.; Nielsen, P. F.; Roepstorff, P.; Johansson, K. E.; Kamensky, I.; Lindberg, M. S. L., Plasma desorption mass spectrometry of peptides and proteins adsorbed on nitrocellulose. Anal. Chem. 1986, 58 (6), 1084-1087.
52. Benninghoven, A.; Sichtermann, W. K., Detection, identification, and structural investigation of biologically important compounds by secondary ion mass spectrometry. Anal. Chem. 1978, 50 (8), 1180-1184.
53. Choi, B. K.; Hercules, D. M.; Zhang, T.; Gusev, A. I., Comparison of quadrupole, time-of-flight, and Fourier transform mass analyzers for LC-MS applications. LC GC North America 2001, 19 (5), 514-524.
54. Lees, J. G.; Miles, A. J.; Wien, F.; Wallace, B., A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 2006, 22 (16), 1955-1962.
55. Kypr, J.; Kejnovská, I.; Renčiuk, D.; Vorlíčková, M., Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009, 37 (6), 1713-1725.
56. Roos, W. H.; Wuite, G. J., Nanoindentation studies reveal material properties of viruses. Adv. Mater. 2009, 21 (10‐11), 1187-1192.
57. AFM probe. http://www.nanosensors.com/ (accessed May 30, 2016).
58. 鄭有舜, X-光小角度散射在軟物質研究上的應用. 物理雙月刊 2004, 26 (2), 416-424.
59. Harper, P. E.; Mannock, D. A.; Lewis, R. N.; McElhaney, R. N.; Gruner, S. M., X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases*. Biophys. J. 2001, 81 (5), 2693-2706.
60. Carlstedt, J.; Lundberg, D.; Dias, R. S.; Lindman, B. r., Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant–cyclodextrin mixtures: Macroscopic phase behavior, aggregate properties, and dissolution mechanisms. Langmuir 2012, 28 (21), 7976-7989.
61. (a) Uhríková, D.; Zajac, I.; Dubničková, M.; Pisárčik, M.; Funari, S. S.; Rapp, G.; Balgavý, P., Interaction of gemini surfactants butane-1, 4-diyl-bis (alkyldimethylammonium bromide) with DNA. Colloids Surf. B. Biointerfaces 2005, 42 (1), 59-68; (b) Zhao, X.; Shang, Y.; Hu, J.; Liu, H.; Hu, Y., Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12. Biophys. Chem. 2008, 138 (3), 144-149.
62. Evdokimov, Y. M.; Platonov, A.; Tikhonenko, A.; Varshavsky, Y. M., A compact form of double‐stranded DNA in solution. FEBS Lett. 1972, 23 (2), 180-184.
63. Ramos, J. É. B.; de Vries, R.; Ruggiero Neto, J., DNA ψ-condensation and reentrant decondensation: effect of the PEG degree of polymerization. J. Phys. Chem. B 2005, 109 (49), 23661-23665.
64. Perales, J. C.; Grossmann, G. A.; Molas, M.; Liu, G.; Ferkol, T.; Harpst, J.; Oda, H.; Hanson, R. W., Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J. Biol. Chem. 1997, 272 (11), 7398-7407.
65. Keller, D.; Bustamante, C., Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi‐type circular dichroism. J. Chem. Phys. 1986, 84 (6), 2972-2980.
66. Hwang, J.; Son, M.; Oh, J.; Ahn, D.; Hong, S.; Kim, H.; Hwang, S., Transport study of lambda DNA molecules. J. Korean. Phys. Soc. 2007, 50 (3), 902-904.
67. Sorenson, G. P.; Mahanthappa, M. K., Unexpected role of linker position on ammonium gemini surfactant lyotropic gyroid phase stability. Soft matter 2016, 12 (8), 2408-2415.
68. Leal, C.; Wadsö, L.; Olofsson, G.; Miguel, M.; Wennerström, H., The hydration of a DNA-amphiphile complex. J. Phys. Chem. B 2004, 108 (9), 3044-3050.
69. Karlsson, L.; van Eijk, M. C.; Söderman, O., Compaction of DNA by gemini surfactants: effects of surfactant architecture. J. Colloid Interface Sci. 2002, 252 (2), 290-296.
70. Chen, X.; Wang, J.; Shen, N.; Luo, Y.; Li, L.; Liu, M.; Thomas, R. K., Gemini surfactant/DNA complex monolayers at the air-water interface: Effect of surfactant structure on the assembly, stability, and topography of monolayers. Langmuir 2002, 18 (16), 6222-6228.
71. Zana, R., Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J. Colloid Interface Sci. 2002, 248 (2), 203-220.
72. Rosenzweig, H. S.; Rakhmanova, V. A.; MacDonald, R. C., Diquaternary ammonium compounds as transfection agents. Bioconj. Chem. 2001, 12 (2), 258-263.
73. Wang, L.; Koynova, R.; Parikh, H.; MacDonald, R. C., Transfection activity of binary mixtures of cationic O-substituted phosphatidylcholine derivatives: the hydrophobic core strongly modulates physical properties and DNA delivery efficacy. Biophys. J. 2006, 91 (10), 3692-3706.
74. Tresset, G., The multiple faces of self-assembled lipidic systems. BMC Biophysics 2009, 2 (1), 3.
75. Fernandes, R. M.; Marques, E. F.; Silva, B. F.; Wang, Y., Micellization behavior of a catanionic surfactant with high solubility mismatch: Composition, temperature, and salt effects. J. Mol. Liq. 2010, 157 (2), 113-118.
76. Su, H. M. Self-assembling Behavior of a Gemini Surfactant-based Catanionic System: Effect of Molecular Configuration and Surface Charge Density. Master Thesis, National Central University, 2016.