| 研究生: |
陳奕安 Yi-An Chen |
|---|---|
| 論文名稱: |
多都卜勒氣象雷達反演之垂直速度的 剖風儀驗證及高解析度三維風場反演 能力的測試 Verification of multiple-Doppler-radar derived vertical velocity using profiler data and high resolution examination over complex terrain |
| 指導教授: |
廖宇慶
Yu-Chieng Liou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 三維變分方法發展的多都卜勒風場反演系統 、剖風儀 |
| 外文關鍵詞: | WISSDOM, Profiler |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究運用兩個剖風儀觀測(UHF和L-band)驗證垂直速度的準確性,所選取的個案為2017年9月12日至13日的泰利颱風及2018年7月10日的瑪麗亞颱風,使用三維變分方法發展的多都卜勒風場反演系統(WInd Synthesis System using DOppler Measurement,簡稱WISSDOM) 加入一個S-band雷達(五分山雷達)及兩個C-band雷達(桃園機場及中央大學的雷達)來反演垂直速度。結果顯示,WISSDOM所反演的垂直速度和剖風儀所量測的相當吻合,且WISSDOM和L-band剖風儀垂直指向的模式所觀測到的垂直速度有最高的相關性及最小的方均根誤差,此WISSDOM反演的結果總體而言相較North (2017)等人在Oklahoma利用ARM雷達網驗證的研究來得好。
此外,為了提升WISSDOM在垂直速度的反演能力,將L-band剖風儀所觀測的風場設定750公尺的影響範圍並利用高斯分布的權重同化進WISSDOM中,首先利用UHF剖風儀進行此方法的風場驗證,結果顯示加入剖風儀後能有效改善WISSDOM在較低高度的風場,並且發現加入剖風儀後影響不僅在半徑750公尺內,實質可影響整個模式網格,使用桃園機場雷達進行風場驗證,結果顯示WISSDOM同化L-band剖風儀風場後能提升和桃園機場雷達徑向風的相關性並降低誤差,證明此同化方法能確切改善WISSDOM的風場。
最後,測試WISSDOM在高解析度(100公尺)於複雜地形上的風場反演能力,本項為OSSE實驗,假定兩座雷達於模式外進行反演測試,首先針對高解析度無明顯地形區域進行測試,發現WISSDOM能將風場良好的反演出來,再來將區域移置陽明山進行複雜地形測試,結果顯示WISSDOM也能反演出於複雜地形上高解析度的風場結構。
The retrieval of vertical velocity using Doppler radar data always contains large uncertainty. In this study the quality of the vertical velocity retrieved by a 3DVar-based multiple-Doppler wind analysis system named WISSDOM (WInd Synthesis System using DOppler Measurement) is investigated. Data from one S-band (RCWF) radar and two C-band radars (RCTP and NCU) in northern Taiwan are utilized.
The accuracy of the vertical velocity from WISSDOM is examined using two profilers (L-band and UHF) observations. The inter-comparison shows that WISSDOM-derived vertical velocity agrees reasonably well with the profiler data. The highest correlation and the smallest RMSD (Root-Mean-Square Deviation) take place when comparing against the L-band profiler data obtained under vertical beam scanning mode. The WISSDOM-derived results are generally better than those reported in a previous study using ARM scanning radar network in Oklahoma.
The winds from the L-band profiler are also merged into WISSDOM, resulting in an overall improvement of the three-dimension wind field at low levels. UHF and RCTP are applied to verify the accuracy of the method. It is shown that WISSDOM assimilating the L-band can reduce RMSD and enhance correlation with UHF and RCTP. The result suggests that the method can get better three-dimension wind field.
Finally, WISSDOM retrieved wind field in different terrain with high resolution (100m) is tested. A true wind field is simulated by WRF and two virtual radars are put outside the domain in an OSSE experiment. Both the domain set in a plain and in a mountain show that WISSDOM can retrieve a well-organized wind field.
參考文獻
尤心瑜2009:同化都卜勒雷達資料改善模式預報之研究。國立中央大學大氣物
理研究所碩士論文,1-93。
陳尉豪、廖宇慶,2012:同化多都卜勒雷達資料以改善模式定量降水預報 2008 SoWMEX IOP8個案分析。大氣科學,第40期,323-348 。
邱健倫2013: 使用氣象雷達改善對流尺度定量降水預報研究-理想和真實個案
之分析結果。國立中央大學大氣物理研究所碩士論文,1-96。
黃沛瑜,2012 使用多部都卜勒/偏極化雷達分析凡那比颱風分析凡那比颱風(2010)的眼牆重建過程。國立中央大學大氣物理研究所碩士論文,1-90。
廖浩彥,2014:利用雷達觀測直接反演氣象變數進行資料同化以改進短期定量降
水預報-2008 SoWMEX IOP8 個案分析。國立中央大學大氣物理研究所碩士論文,1-104。
鄧詠霖,2015: 利用雷達觀測與反演變數改善模式定量降水預報之能力-2008
年西南氣流實驗 IOP#8 個案分析。國立中央大學大氣物理研究所碩士論文,1–111。
蘇俊偉,2016:利用觀測資料與多都卜勒風場反演系統做垂直速度上的驗證。國立中央大學大氣物理研究所碩士論文,1–74。
Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570–573.
Beck, J., and O. Bousquet, 2013: Using gap-filling radars in mountainous regions to complement a national radar network: Improvements in multiple-Doppler wind syntheses.J. Appl. Meteor. Climatol., 52, 1836–1850, doi:10.1175/JAMC-D-12-0187.1.
Bousquet, O., and Chong, M. 1998: A multiple-Doppler synthesis and continuity adjustment technique (MUSCAT) to recover wind components from Doppler radar measurements. J. Atmos. Oceanic Technol. 15: 343–359.
_______, O., and Tabary, P. 2013: Development of a nationwide, real-Time, 3-D wind and reflectivity radar composite in France, Q. J. R. Meteorol. Soc. 140: 611–625.
Brandes, E., 1977: Flow in severe thunderstorms observed by dual Doppler radar. Mon. Wea. Rev., 105, 113––120.
Chong, M., and J. Testud, 1983: Three-dimensional wind field analysis from dual-Doppler radar data. Part III: The boundary condition: An optimum determination based on a variational concept. J. Climate Appl. Meteor., 22, 1227–1241.
Cifelli, R., and Rutledge, S. A. 1994: Vertical motion structure in maritime continent mesoscale convective systems: Results from a 50-MHz profiler, J. Atmos. Sci., 51, 2631–2652.
Collis, S., Protat, A., May, P. T., and Williams, C. 2014: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements, J. Appl. Meteorol. Clim., 52, 1909–1922, 2013.
Doviak, R. J., and P. Ray, 1976: Error estimation in wind fields derived from dual Doppler radar measurement. J. Appl. Meteor. Meteor., 15 , 868-878.
Giangrande, S. E., Toto, T., Jensen, M. P., Bartholomew, M. J.,Feng, Z., Protat, A., Williams, C. R., Schumacher, C., and Machado, L. 2016: Convective cloud vertical velocity and massflux characteristics from radar wind profiler observations during GoAmazon2014/5, J. Geophys. Res.-Atmos., 121, 12891–12913.
Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142.
____, ___, K. Brewster, and K. K. Droegemeier, 2004: A three dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469.
Kumar, V. V., Jakob, C., Protat, A., Williams, C. R., and May, P. T. 2015: Mass-flux characteristics of tropical cumulus clouds from wind profiler observations at Darwin, Australia, J. Atmos. Sci., 72, 1837–1855.
Lee, J.-T., D.-I. Lee, C.-H. You, H. Uyeda, Y.-C. Liou, I.-S. Han, 2014: dual-Doppler radar analysis of a near-shore line-shaped convective system on 27 July 2011, Korea: a case study. Tellus A, 66,23453.
Lenschow, D. H,1976: Estimating updraft velocity from an airplane response, Mon Weather Rev., 104, 618–627.
Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple–Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea.Rev. ,137, 3992–4010.
_____, Y.-C., S.-F. Chang, and J. Sun, 2012: An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Mon. Wea. Rev., 142, 1603–1619.
_____, Y.-C., L. Chiou, W. H. Chen, H. Y. Yu, 2014 : Improving the model convective storm quantitative precipitation nowcasting by assimilating state variables retrieved from multiple retrieved from multiple-Doppler radar observations. Mon. Wea. Rev., 142 , 4017––4035.
May, P. T. and Rajopadhyaya, D. K. 1999: Vertical velocity characteristics of deep convection over Darwin, Australia, Mon. Weather Rev.,127, 1056–1071.
___, A. R. Jameson, T. D. Keenan, and P. E. Johnston, 2001: A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J. Appl. Meteor., 40, 1702–1717.
North, K. W., Oue, M., Kollias, P., Giangrande, S. E., Collis, S., & Potvin, C. K. 2017:
Vertical air motion retrievals in deep convectiveclouds using the ARM scanning radar network in Oklahoma during MC3E. Atmospheric Measurement Techniques, 10, 2785–2806.
O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9, 197–203.
Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B. Bumgarner, 1975:Dual-Doppler observation of a tornadic storm. J. Appl. Meteor., 14, 1521–1530.
——, K. K.Wagner, K.W. Johnson, J. J. Stephens,W. C. Bumgarner, and E. A. Mueller, 1978: Triple-Doppler observations of a convective storm. J. Appl. Meteor., 17, 1201–1212.
Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Lowwavenumber structure and evolution. Mon. Wea. Rev., 137,603–631.
Shapiro, C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 2089–2106.