跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹敏雄
Min-Hsiung Chan
論文名稱: 入口角度對非對稱壓延A1050P鋁材彎曲行為之實驗研究
Experimental research of entry angle effect curvature behavior of asymmetrical rolling aluminum A1050P
指導教授: 葉維磬
Wei-Ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 壓延入口角度曲率
外文關鍵詞: rolling, entry angle, curvature
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於非對稱壓延可有效降低壓延力及壓延扭矩,使材料於壓延製
    程安排上,更趨自由與多樣性,在壓延工業之應用上,具有極大之助益;但於非對稱壓延後之板材易產生彎曲現象而造成產品品質降低及設備損壞。
    本文主要以實驗的方法,觀察A1050P鋁材接觸輥輪時之入口角度
    不同,對壓延後之板材彎曲曲率的變化情形,探討曲率與上下輥輪切線速度比值、縮減率及界面摩擦條件之關係,並討論加工參數對壓延力和壓延扭矩之影響。期望藉由本文所得之實驗結果,可提供理論解析之驗證及非對稱壓延製程品質改善之參考。


    Due to the asymmetrical rolling can reduce rolling force
    and rolling torque that will make rolling process also flexible and variable. There are extreme advantages in application of rolling industry. The specimens will curvature after the asymmetrical rolling, the flat bending will reduce production quality and impact machine.
    This research mainly use experiment to observe curvature
    about aluminum flat A1050P at rolling mill with different
    concact entry angle after rolling, investigate curvature
    behavior with mismatch peripheral speed ratio, reduction,
    interface friction, also discuss rolling force and rolling
    torque with process parameter. The results will supply theory, numeral analysis and process quality improvement.

    中文摘要 I Abstract II 誌謝 III 總目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒 論 1 1-1 前言 1 1-2 板材非對稱壓延 2 1-3 研究動機 3 第二章 壓延基礎 4 2-1 壓延種類 4 2-2 文獻回顧 5 2-2-1 實驗研究方面 5 2-2-2 理論解析方面 7 第三章 實驗設備與方法 11 3-1 實驗設備 11 3-1-1 壓延機 11 3-1-2 資料擷取系統 12 3-2 實驗方法 12 3-2-1 試片規格與準備 12 3-2-2 非對稱壓延實驗條件 13 3-2-3 潤滑條件 14 3-2-4 編號的表示意義 14 3-2-5 輥論及工作平台之調整 15 3-2-6 壓延實驗步驟 16 3-3 成形試片之曲率量測 17 3-3-1 曲率計之測定原理 17 3-3-2 曲率量測方法之探討 18 3-3-3 曲率計之校正 18 3-4 拉伸試驗 19 3-5 環壓試驗 20 第四章 結果與討論 23 4-1 拉伸試驗 23 4-2 環壓試驗 23 4-3 壓延實驗 24 4-3-1 壓延力及壓延扭矩之比較 25 4-3-2 周速比對壓延試片曲率之效應 27 4-3-3 入口角度對於同徑同周速成形試片彎曲曲率的影響 30 4-3-4 入口角度對於同徑異周速成形試片彎曲曲率的影響 31 4-3-5 界面摩擦應力對成形試片彎曲曲率的效應 32 第五章 結論 36 參考文獻 38 附錄 A 70 附錄 B 78 附錄 C 80

    [1] T. von Karman, Zeitschrift fur angewandte Mathematik und Mechanik, 5 (1925) 139.
    [2] E. Orowan, The Calculation of Roll Pressure in Hot and Cold Flat Rolling, Proceedings of the Institution of Mechanical Engineers, 150 (1943) 140-167.
    [3] D. R. Bland and H. Ford, The Calculation of Roll Force and Torque in Cold Strip Rolling with Tensions, Proc. Instn. Mech. Engrs., 159 (1948) 144-153.
    [4] H. Ford, F. Ellis and D. R. Bland, Cold Rolling with Strip Tension Part I. A New Approximate Method of Calculation and a Comparison with Other Method, Journal of the Iron and Steel Institute, May, (1951) 57-72,.
    [5] R. B. Sims, The Calculation of Roll Force and Torque in Hot Rolling Mills, Proc. Instn. Mech. Engrs., 168 (1954) 191-200.
    [6] J. M. Alexander, On the Theory of Rolling, Proceedings of the Royal Socity of London. Series A, 326 (1972) 535-563.
    [7] D. Rusia, Improvements to Alexander''s Computer Model for Force and Torque Calculations in Strip Rolling Process, Journal of the Material Shaping Technology, 8 (1990) 167-177.
    [8] D. Rusia, Review and Evaluation of Different Methods for Force and Torque Calculations in the Strip Rolling Process, Journal of the Material Shaping Technology, 9 (1991) 117-125.
    [9] W. Johnson and G. Needham, An Experimental Study of
    Asymmetrical Rolling, Inst. of Mech. Sci., 8 (1966) 448-455.
    [10] I. F. Collins and P. Dewhurst, A Slipline Field Analysis of Asymmetrical Hot Rolling, Int. J. Mech. Sci., 17 (1975) 643-651.
    [11] J. Jeswiet and P. G. Greene, Experimental Measurement of Curl in Rolling, J. Mater. Proces. Technol., 84 (1998) 202-209.
    [12] M. Salimi and F. Sassanib, Modifed Slab Analysis of Asymmetrical Plate Rolling, International Journal of Mechanical Sciences, 44 (2002) 1999–2023.
    [13] H. Dyja, P.Korczak and J.W.Pilarczyk, J. Grzybowski, Theoretical and Experimental Analysis of Plates Asymmetric Rolling, Journal of Materials Processing Technology, 45 (1994) 167-172
    [14] H. Dyja, J. Markowski and D. Stoninski, Asymmetry of the Roll Gap as a Factor Improving Work of the Hydraulic Gauge Control in the Plate Rolling Mill, Journal of Materials Processing Technology, 60 (1996) 73-80.
    [15] J. -S. Lu, O. -K. Harrer, W. Schwenzfeier and F. D. Fischer, Analysis of the Bending of the Rolling Material in Asymmetrical Sheet Rolling, International Journal of Mechanical Sciences, 42 (2000) 49-61.
    [16] J. Markowski, H. Dyja, M. Knapinski and A. Kawalek, Theoretical Analysis of the Asymmetric Rolling of Sheets on Leader and Finishing Stands, Journal of Materials Processing Technology, 138 (2003) 183-188.
    [17] A. Kawalek, Forming of Band Curvature in Asymmetrical Rolling Process, Journal of Materials Processing Technology, 155-156 (2004) 2033-2038.
    [18] A. Kawalek, The Theoretical and Experimental Analysis of The Effect of Asymmetrical Rolling on The Value of Unit Pressure, Journal of Materials Processing Technology, 157-158 (2004) 531-535.
    [19] M. philipp, W. Schwenzfeier, F. D. Fischer, R. Wodlingre and C. Fischer, Front End Bending in Plate Rolling Influenced by Circumferential Speed Mismatch and Geometry, Journal of Materials Processing Technology, 184 (2007) 224-232.
    [20] 孟繼洛,”機械材料”, 臺北市:曉園出版社, (1990) 430-431。
    [21] A. T. Male and M. G. Cockcroft, A Method for the Determination of the Coefficient of Friction of Metals under Conditions of Bulk Plastic Deformation, Journal of the Institute of Metals, 93 (1964-65) 38-46.
    [22] Designation:E8M, Standard Test Methods for Tension Testing of Metallic Materials [Metric], 85.
    [23] W. F. Hosford and M. C. Caddell, Metal forming Mechanics and Metallurgy, Prentice-Hall International Inc., (1993) 55-60.

    QR CODE
    :::