跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張家榮
Chia-jung Chang
論文名稱: 隨機波動模型下參數之最大概似估計
Maximum Likelihood Estimation of Parameterson the Stochastic Volatility Model
指導教授: 傅承德
Cheng-Der Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 98
語文別: 中文
論文頁數: 35
中文關鍵詞: 有母數拔靴法蒙地卡羅模擬Heston 模型波動度
外文關鍵詞: Heston model; volatility; Monte Carlo simulation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 假如金融市場上的股價(stock)走勢跟隨Heston 模型,則
    可以藉由股價資料來推估參數,而若引進選擇權(option)的資
    料,來處理觀察不到的波動度,也可以由股價跟選擇權的資料推
    估參數。在這篇論文裡我們有兩種方法去推估參數:方法一是只
    有股價資料時,這時候假設波動度(volatility)是可以觀察到的;
    方法二是當波動度是觀察不到時,我們選用選擇權資料利用轉換
    來代替觀察不到的波動度去推估參數。因此我們想知道上述兩種
    參數估計的差距。本文使用最大概似估計法(maximum likelihood
    estimator, MLE)來驗證。也利用蒙地卡羅模擬以及有母數拔靴
    (parametric bootstrap) 重複抽樣方法去比較兩者的結果是否一
    致。


    In this paper, we want to know if the financial market stock
    price trend to follow Heston model, we can estimate the parameters
    by stock price data when the volatility is assumed to be observable,
    and while the volatility does not observed, we can use option data to
    deal with that, then use stock and option data to estimate the
    parameters. In this paper, we have two methods to estimate the
    parameters: one method only stock information, the assumption that
    volatility is to be observed; method 2 is the assumption that
    volatility is not observable, we use options data instead of using
    conversion can not see the volatility to estimate the parameters. We
    would like to know the difference between the estimation accuracy
    of the theoretical exact value. In order to count the value of this
    theory, we use the maximum likelihood estimator(MLE) to estimate
    the parameters of the stochastic volatility model in the consistency
    of MLE estimation. We also use the Monte Carlo simulation and the
    papametric bootstrap method of repeated sampling to compare the
    results.

    摘要 ....................................................... i 英文摘要.................................................. ii 誌謝..................................................... iii 目錄...................................................... iv 表目錄..................................................... v 符號說明.................................................. vi 一、緒論................................................... 1 1.1 研究動機與目的................................... 1 1.2 論文架構概述..................................... 4 二、文獻回顧............................................... 5 2.1 模擬Heston 模型股價之介紹........................ 5 2.2 模擬Heston 模型選擇權價格之介紹.................. 7 三、參數估計之方法........................................ 10 3.1 可直接觀察波動度下,概似函數之介紹.............. 10 3.2 無法直接觀察波動度下,概似函數之介紹............ 12 四、Heston 模型參數估計之分析............................. 15 4.1 資料模擬及方法分析.............................. 15 五、結論.................................................. 25 參考文獻.................................................. 26 附錄...................................................... 27

    [1] Ait-Sahalia, Y., 1999. Transition densities for interest rate and other nonlinear
    diffusions. Journal of Finance.54, 1361-1395.
    [2] Ait-Sahalia, Y., 2001. Closed-form likelihood expansions for multivariate
    diffusions. Tech. rep., Princeton University.
    [3] Ait-Sahalia, Y., 2002. Maximum-likelihood estimation of discretely sampled
    diffusions: A closed-form approx-imation approach. Econometrica
    70, 223-262.
    [4] Ait-Sahalia, Y., Lo, A., 1998. Nonparametric estimation of state-pricedensities
    implicit in financial asset prices. Journal of Finance 53, 499-
    547.
    [5] Ait-Sahalia, Y., Mykland, P. A., 2003. The effects of random and discrete
    sampling when estimating continuous-time diffusions. Econometrica
    71, 483-549.
    [6] Andersen, T., Bollerslev, T., Meddahi, N., 2002a. Analytic evaluation
    of volatility forecasts. Tech. rep., North-Western University.
    [7] Andersen,T.G.,Benzoni,L.,Lund,J.,2002b.Anempirical investigation of
    continuous-time equity return models. Journal of Finance 57, 1239-
    1284.
    [8] Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative
    option pricing models. Journal of Finance 52, 2003-2049.
    [9] Bates, D. S., 2000. Post-’87 crash fears in the S&P 500 futures option
    market. Journal of Econometrics 94, 181-238.
    [10] Bates, D. S., 2002. Maximum likelihood estimation of latent affine processes.
    Tech. rep., University of Iowa.

    QR CODE
    :::