跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李宣融
Hsuan-Jung Li
論文名稱: 基於神經網路與指針網路實現自動化排程
Automated Scheduling Based on Neural Networks and Pointer Network
指導教授: 葉英傑
Ying-Chieh Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 55
中文關鍵詞: 自動化排程神經網路指針網路啟發式演算法監督式學習
外文關鍵詞: Automated Scheduling, Neural Networks, Pointer Network, Heuristic Algorithms, Supervised Learning
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當代製造與服務場域中,排程問題廣泛存在於產線管理、訂單處理、資源配置等應用場景,其複雜性與多樣性導致其被歸類為 NP-hard 問題。面對不同特性與需求的排程任務,單一排程演算法往往難以全盤適用,因此選擇適切的解法策略成為提升排程效能之關鍵。過去研究已提出多種啟發式與元啟發式演算法,如遺傳演算法(GA)、禁忌搜尋(Tabu Search)、螞蟻演算法(ACO)、模擬退火法(SA)、粒子群最佳演算法(PSO)、束搜尋法(Beam Search)等,皆於特定問題中展現良好效能,惟其表現高度依賴於排程實例本身的特徵。為提升排程系統於多樣實例下的決策能力,本研究提出一套整合神經網路( Neural Network, NN)與指針網路(Pointer Network)之架構。研究中透過神經網路學習排程實例的結構化特徵與啟發式演算法迭代資訊並以指針網路作為策略,實現各式排程問題近似解,本實驗將以 NSGA-II 作為標竿學習對象,且以零工式生產排程問題(Job-Shop Scheduling Problem, JSSP) 排程案例進行模擬驗證,評估本架構於不同問題規模與特性下之整體表現與適應能力。


    Scheduling problems are ubiquitous across manufacturing and service industries, spanning production planning, order fulfillment, and resource allocation. Due to their complexity and diverse constraints, such problems are typically classified as NP-hard, making it difficult for a single algorithm to perform optimally across all scenarios. While a variety of heuristic and metaheuristic algorithms—such as Genetic Algorithm (GA), Tabu Search, Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO), and Beam Search—have shown promising results in specific contexts, their performance is often highly sensitive to the characteristics of individual scheduling instances. To enhance the adaptability of scheduling systems, this research proposes an integrated framework that leverages Neural Networks (NNs) and Pointer Network. The proposed approach leverages NNs to learn both the structural features of scheduling instances and the iterative information generated by heuristic algorithms, while employing Pointer Networks as the policy to produce approximate solutions for various scheduling problems. Experimental validation is carried out using NSGA-II as the benchmark for learning, and by simulating the Job-Shop Scheduling Problem (JSSP) under a flexible manufacturing scenario. The evaluation examines the framework’s overall performance and adaptability across different problem scales constraints.

    摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究挑戰 2 1.3 研究目的 2 1.4 研究方法 3 第二章 文獻回顧 4 2.1 排程問題概述與挑戰 4 2.2 啟發式與元啟發式演算法於排程應用 5 2.3 神經網路於排程問題之研究發展 6 2.4 注意力機制於排程問題的應用發展 7 2.5 方法統整 8 第三章 方法論 9 3.1 資料預處理與圖建構 11 3.1.1 資料來源 11 3.1.2 特徵工程 11 3.2 排程特性擷取 14 3.2.1 神經網路架構設計 15 3.2.2 節點特徵抽取層 15 3.2.3 異構圖卷積層 15 3.2.4 殘差連接與層標準化 16 3.2.5 自動層數搜索機制 16 3.3 啟發式演算法迭代資訊擷取 17 3.3.1 啟發式演算法決策軌跡之定義 17 3.3.2 啟發式演算法決策軌跡之定義 18 3.3.3 統一節點編號對齊 19 3.4 雙階段神經網路特徵融合 19 3.4.1 排程特徵篩選 20 3.4.2 統一節點編號對齊 20 3.4.3 雙路徑神經網路獨立特徵抽取 20 3.4.4 節點特徵融合 21 3.4.5 特徵空間投影與統一嵌入空間構建 21 3.5 指針網路架構設計 22 3.5.1 Encoder 模組 22 3.5.2 Decoder 模組與 Attention 機制 23 3.5.3 指針網路動態選擇排序決策過程 24 3.5.4 指針網路訓練方法 24 3.6 績效評估與實驗設計 24 3.6.1 績效評估指標 25 3.6.2 比較方法與基準模型(Benchmark Methods) 25 第四章 實驗 27 4.1 資料與前處理 27 4.1.1 原始資料格式說明 27 4.1.2 前處理步驟與圖建構流程 28 4.1.3 輸入圖特徵設計 29 4.2 實驗環境與超參數設置 29 4.2.1 硬體與軟體環境 29 4.2.2 超參數設置 30 4.2.3 模型訓練與收斂控制 33 4.3 模型訓練結果與可視化分析 33 4.3.1 模型訓練與收斂控制 33 4.3.2 特徵重要性觀察 34 4.3.3 排序結果可視化與驗證 35 4.4 其他演算法比較分析 39 4.4.1 比較方法說明 40 4.4.2 實驗結果比較 40 4.4.3 結果分析 41 第五章 結論 42 參考文獻 43

    Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly
    learning to align and translate. arXiv preprint arXiv:1409.0473.
    Dauzère-Pérès, S., & Paulli, J. (1997). An integrated approach for modeling and solving the
    general multiprocessor job-shop scheduling problem using tabu search. Annals of Operations research, 70(0), 281–306.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
    genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
    Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning
    approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.
    Echeverria, I., Murua, M., & Santana, R. (2025). Self-evaluation for job-shop scheduling.
    arXiv preprint arXiv:2502.08684.
    Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In
    Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011), 315–323.
    Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
    Computers & Operations Research, 13(5), 533–549.
    Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
    Addison-Wesley, 1989(102), 36.
    Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on
    large graphs. Advances in neural information processing systems, 30.
    Han, Y., Huang, G., Song, S., Yang, L., Wang, H., & Wang, Y. (2022). Dynamic neural
    networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7436–7456.
    Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated
    annealing. Science, 220(4598), 671–680.
    Leray, P., & Gallinari, P. (1999). Feature selection with neural networks. Behaviormetrika,
    26(1), 145-166.
    Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible
    job shop scheduling problem. International Journal of Production Economics, 174, 93–110.
    Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
    arXiv:1711.05101.
    Nazari, M., Oroojlooy, A., Snyder, L., & Takác, M. (2018). Reinforcement learning for
    solving the vehicle routing problem. Advances in Neural Information Processing Systems, 31, 9839–9849.
    Pinedo, M. L. (2016). Scheduling: Theory, algorithms, and systems (5th ed.). Springer.
    Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
    Transactions on Signal Processing, 45(11), 2673–2681.
    Tsai, C.C. (2024). A bi-objective genetic algorithms for solving a job shop scheduling
    problem with material constraint and parallel batching when minimizing makespan and total number of tardy stage-outs. Master’s thesis. National Central University..
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &
    Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, 30, 5998–6008.
    Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018).
    Graph Attention Networks. arXiv preprint arXiv:1710.10903.
    Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. Advances in neural
    information processing systems, 28, 2692–2700.
    Wang, T., Payberah, A. H., & Vlassov, V. (2020). Convjssp: Convolutional learning for
    job-shop scheduling problems. In 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1483-1490).
    Zeng, Y., Zhou, J., & Du, L. (2021). RLC-GNN: An improved deep architecture for spatial-
    based graph neural network with application to fraud detection. Applied Sciences, 11(12), 5656.
    Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., & Xu, C. (2020). Learning to dispatch
    for job shop scheduling via deep reinforcement learning. Advances in Neural Information Processing Systems, 33, 1621–1632.

    QR CODE
    :::