| 研究生: |
張智雄 Chih-Hsiung Chang |
|---|---|
| 論文名稱: |
以建築資訊模型/深度學習作法實現聲音定位救災用途 Realization of Indoor Positioning Based on Sound for Disaster Relief Using Building Information Modeling and Deep Learning |
| 指導教授: |
周建成
Chien-Cheng Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 人工智慧 、聲音定位 、虛擬實境 、建築資訊模型 、頭部相關轉移函數 |
| 外文關鍵詞: | Artificial Intelligence, Sound Positioning, Virtual Reality, Building Information Modeling, Head Related Transfer Functions |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的日新月異,建築資訊模型(Building Information Modeling, BIM)、人工智慧(Artificial Intelligence, AI)和虛擬實境(Virtual Reality, VR)技術也逐漸成熟,其中又以AI的成長最為顯著,此一進展也漸漸改變人們的生活習慣,例如透過手機聲音辨識即可達成語音查詢或個人化秘書之功能。而聲音對於建築物也是一項非常重要之課題,例如透過各種科技模擬建築物室內或戶外場景中的聲音傳播和噪音控制…等。目前,聲音定位方面之應用非常具有潛力,但聲音定位技術仍會受到噪音、障礙物…等干擾,所以運用較為受限,故本研究想藉此提出一聲音定位的方法,以解決上述之問題。
本研究利用BIM、VR和頭部相關轉移函數(Head Related Transfer Functions, HRTF)技術達到擬真音場,並蒐集音訊後再透過AI訓練,以達到聲音定位之功能。經過驗證我們得知:利用本研究所提出之聲音定位方法,在解析度為25m2時,準確度為95.2%;在解析度為12m2時,準確度為89.3%,且在AI訓練階段皆有加入訊噪比為0.3之噪音。在連續性音訊中,當解析度為25 m2和12 m2時,都可100%辨識,且準確度分別高達94%及86%。
本研究驗證區域也挑選障礙物較多之廚房和客廳區域,相對於傳統聲音定位受障礙物之影響,透過本研究所提出之聲音參數化架構,反而於AI訓練階段取得更多特徵值,以達到更高準確度,也解決現今聲音定位應用範圍受限之疑慮,且相較於其他無線射頻定位技術受金屬屏蔽作用所限制,本研究所提供聲音定位之功能可利用蒐集不同音頻,並擷取某特定頻率進行定位,以此增加在複雜環境聲音定位可行性,例如:火場…等。
With the rapid development of science and technology, BIM, AI, and VR technologies have gradually matured. Among them, the growth of Artificial Intelligence has become most remarkable. This progress has gradually changed people’s living habits. For example, a voice query or personalized secretary function can be achieved through voice recognition of a cell phone. Sound is also a very important issue for buildings, such as simulating the sound transmission and noise control in indoor or outdoor scenes of buildings through various technologies. At present, the application of sound positioning has great potential, but sound positioning technology is still subject to noise, obstacles, etc. Therefore, this study would like to propose a sound localization method to solve the above problem.
This study uses BIM, VR, and HRTF techniques to achieve a Virtual sound field. Collecting the audio and then uses AI training to achieve sound positioning. After verification, we learned that: Using the sound positioning method proposed in this study, in the AI training stage, noises with a signal to noise ratio 0.3 are added. The accuracy is 95.2% when the resolution is 25m2; The accuracy is 89.3% when the resolution is 12m2. In continuous stream of audio, when the resolution is 25 m2 and 12m2, it can be 100% recognized, and the accuracy is as high as 94% and 86% respectively.
In this study, the verification area selected kitchen and living areas with more obstacles. Compared with traditional sound localization affected by obstacles, through the sound parameterization framework proposed in this study, more features are obtained in the AI training stage to achieve higher accuracy. Also solves the doubts about the limited scope of today's sound positioning applications. Compared to other radio frequency positioning technologies, it is limited by metal shielding. The sound positioning function of the institute can be used to collect different frequencies and capture a specific frequency for positioning. In order to increase the feasibility of sound positioning in a complex environment, such as fire field, and so on.
吳中期, (2016). IFC與Unity資料模型交換機制之建置與應用, 碩士論文, 國立高雄應用科技大學土木工程研究所, 高雄市, 臺灣。
許俊逸、徐景文、林傑、李文欽, (2014). BIM帶來的變革與政府的前瞻作為, 工程, 87(5), 2-9。
謝志侑, (2016). 改善耳機產生之虛擬音場定位感之探討, 碩士論文, 國立臺北科技大學資訊工程系所, 臺北市, 臺灣。
黃文堅、唐源, (2017). 實戰Tensorflow:Google深度學習系統, 碁峰資訊, 臺北市, 臺灣。
Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., & Yu, D. (2014). Convolutional Neural Networks for Speech Recognition. IEEE/ACM Transactions On Audio, Speech, And Language Processing, 22(10), 1533 -1545.
Altini, M., Brunelli, D., Farella, E., & Benini, L. (2010). Bluetooth in door localization with multiple neural networks. IEEE 5Th International Symposium On Wireless Pervasive Computing, IEEE, Mondena, Italy, May 5-7, 2010.
Azhar, S. (2011). Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadership and Management in Engineering, 11(3), 241-252.
Begault, D., & Trejo, L. (2000). 3-D sound for virtual reality and multimedia. NASA Ames Research Center, Sunnyvale, CA, USA.
Biswas, J., & Veloso, M. (2010). WiFi localization and navigation for autonomous indoor mobile robots. IEEE International Conference on Robotics and Automation, IEEE, Anchorage, AK, USA, May 3-7, 2010.
Chen, G., Parada, C., & Heigold, G. (2014). Small-footprint keyword spotting using deep neural networks. International Conference Acoustics, Speech and Signal Processing, IEEE, Florence, Italy, May 4-9, 2014.
Dunston, P., Arns, L., Mcglothlin, J., Lasker, G., & Kushner, A. (2007). An Immersive Virtual Reality Mock-Up for Design Review of Hospital Patient Rooms. International Conference on Construction Applications of Virtual Reality, University Park, State College, PA, USA, Oct. 22-23, 2007.
Eastman, C., Sacks, R., Teicholz, P., & Liston, K. (2011). BIM handbook: A Guide to Building Information Modeling for Owners, Managers, Architects, Engineers, Contractors, and Fabricators, 2nd ed. John Wiley and Sons, Hoboken, NJ, USA.
Filonenko, V., Cullen, C., & Carswell, J. (2010). Investigating Ultrasonic Positioning on Mobile Phones. International Conference On Indoor Positioning and Indoor Navigation, IEEE, Zurich, Switzerland, Sept. 15-17, 2010.
Ibrahim, R., & Rahimian, F. (2010). Comparison of CAD and manual sketching tools for teaching architectural design. Automation in Construction, 19(8), 978-987.
Jin, T. (1997). Studies On Human Behavior And Tenability In Fire Smoke. Fire Safety Science, 5, 3-21.
Krishnan, S., Sharma, P., Guoping, Z., & Woon, O. (2007). A UWB based Localization System for Indoor Robot Navigation. IEEE International Conference On Ultra-Wideband, IEEE, Singapore, Sept.24-26, 2007.
Mandal, A., Lopes, C., Givargis, T., Haghighat, A., Jurdak, R., & Baldi, P. (2005). Beep: 3D Indoor Positioning Using Audible Sound. Second IEEE Consumer Communications and Networking Conference, IEEE, Las Vegas, NV, USA, Jan. 6, 2005.
Mainetti, L., Patrono, L., & Sergi, I. (2014). A survey on indoor positioning systems. International Conference on Software, Telecommunications and Computer Networks, IEEE, Split, Croatia, Sept. 17-19, 2014.
Ni, L., Zhang, D., & Souryal, M. (2011). RFID-based localization and tracking technologies. IEEE Wireless Communications, 18(2), 45-51.
Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84, 292-303.
Pei, L., Chen, L., Guinness, R., Liu, J., Kuusniemi, H., & Chen, Y. et al. (2013). Sound positioning using a small-scale linear microphone array. International Conference on Indoor Positioning and Indoor Navigation, IEEE, Montbeliard-Belfort, France, Oct. 28-31, 2013.
Ramos, G., Cobos, M., Bank, B., & Belloch, J. (2017). A Parallel Approach to HRTF Approximation and Interpolation Based on a Parametric Filter Model. IEEE Signal Processing Letters, 24(10), 1507-1511.
Sainath, T., & Parada, C. (2015). Convolutional Neural Networks for Small-Footprint Keyword Spotting. INTERSPEECH-2015, ISCA, Dresden, Germany, Sept. 6-10, 2015.
Savioja, L., & Svensson, U. (2015). Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America, 138(2), 708-730.
Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., & van den Driessche, G. et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.
Tóth, L. (2014). Combining time- and frequency-domain convolution in convolutional neural network-based phone recognition. International Conference On Acoustics, Speech and Signal Processing, IEEE, Florence, Italy, May 4-9, 2014.
Vorländer, M., Schröder, D., Pelzer, S., & Wefers, F. (2015). Virtual reality for architectural acoustics. Journal of Building Performance Simulation, 8(1), 15-25.
Wikipedia. (2008a). Sound localization in Wikipedia: Interaural Level Difference (ILD) between left ear (left) and right ear (right). Retrieved Nov. 12, 2017, from https://goo.gl/EWNu1S.
Wikipedia. (2008b). Sound localization in Wikipedia: Interaural Time Difference (ITD) between left ear (top) and right ear (bottom). Retrieved Nov. 12, 2017, from https://goo.gl/QumgeC.
Yu, D., & Deng, L. (2014). Automatic Speech Recognition – A Deep Learning Approach. Springer, London, UK.
Zotkin, D., Duraiswami, R., & Davis, L. (2004). Rendering Localized Spatial Audio in a Virtual Auditory Space. IEEE Transactions on Multimedia, 6(4), 553-564.
Zulkifli, R., Mohd Nor, M. J., Ismail, A. R., Nuawi, M. Z., & Tahir, M. F. M. (2009). Effect of Perforated size and air gap thickness on acoustic properties of coir fibre sound absorption panels. European Journal of Scientific Research, 28(2), 242-252.