| 研究生: |
聶瀚明 Hamid Nalbandian Abhar |
|---|---|
| 論文名稱: | Two-Phase Heat Transfer of Refrigerants HFC-134a and HFO-1234yf in Small Channels |
| 指導教授: |
楊建裕
Chien-Yuh Yang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 流動沸騰 、流動冷凝 、微小管 、微流道 、兩相流 、熱傳係數 |
| 外文關鍵詞: | flow boiling, flow condensation, small tube, microchannel, two-phase flow, heat transfer coefficient |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應全球暖化問題,各國訂定法規將逐漸淘汰氫氟碳化合物的使用(hydrofluorocarbon,簡稱HFC,為常見冷媒)。其中1,1,1,2-四氟乙烷(HFC-134a)是用於小型冰箱與汽車空調中的冷媒,更是已經在歐盟被全面禁用,因此尋找替代性冷媒迫在眉睫。近年來一種新型冷媒問世—2,3,3,3-四氟丙烯(HFO-1234yf),其為熱力性質和HFC-134a相近的氫氟烯烴(Hydrofluoroolefins,簡稱HFO),且其全球暖化潛勢(Global warming potential,簡稱GWP)又在規範之內,是有望取代HFC-134a的冷媒。然而目前關於HFO-1234yf的熱傳性能研究卻少之又少,應用在空調系統內微流道熱交換器中的更是寥寥無幾,如果是水力直徑小於0.9mm的微流道研究則是完全沒有。
本研究針使用直徑4mm的圓管及水力直徑0.5mm的正方形平行流道扁平管作為測試段,量測HFC-134a及HFO-1234yf的沸騰及冷凝熱傳性能、壓降,並使用冷媒熱力性質、實驗條件差異、流譜等因素對實驗結果進行詮釋。由於不同的實驗條件下會造成不同的流譜,進而導致不同熱力性質對熱傳、壓降結果的影響比重改變,因此HFC-134a及HFO-1234yf的結果差異也會相應的做出轉換。此種假設同時也可以解釋過去文獻中的不一致之處。
本研究的另一個目的是探討流道幾何形狀對於微流道熱傳表現的影響。實驗結果顯示表面張力對於方形微流道的熱傳影響甚鉅,表面張力會將液體聚集至方形流道的角落,使得管壁的液膜變得非常薄,進而提升熱傳性能。而除了表面張力之外,液體黏滯性、液體熱傳導係數也都是影響方形微流道熱傳性的的主要原因。
The hydrofluoroolefin (HFO) HFO-1234yf has similar thermodynamic properties to HFC-134a but a considerably lower global warming potential. HFO-1234yf is a favorable candidate to replace the refrigerant HFC-134a in the near future. However, few studies have examined the flow boiling and condensation heat transfer performance of HFO-1234yf. Microchannel heat exchangers have been commonly used in air conditioning systems in vehicles due to their low weight and low air-side pressure drops. However, no experimental study has been conducted on the flow boiling and condensation heat transfer performance of HFO-1234yf in microchannels with a hydraulic diameter of less than 0.9 mm.
In this study, an experimental analysis was conducted on the flow boiling and condensation heat transfer, and pressure drops of HFO-1234yf and HFC-134a in a small circular tube with an inner diameter of 4mm and a square parallel microchannel with a hydraulic diameter of 0.5 mm. The test results indicate that the pressure drop, flow boiling, and condensation heat transfer performance depend on the fluid properties, flow conditions, and flow patterns. The pressure drops and heat transfer coefficients of HFO-1234yf and HFC-134a are strongly affected by their two-phase flow patterns at various flow conditions. Flow pattern analysis can explain the inconsistency between the results of this study and those of previous studies on the flow boiling and condensation heat transfer and pressure of HFC-134a and HFO-1234yf.
One purpose of this study was to determine the effects of channel geometry on the flow boiling and condensation inside a microchannel. The experimental results indicate that the surface tension drainage force has crucial effects on the flow boiling and condensation heat transfer in square channels, especially for small channels. The surface tension drainage force pulls the liquid at the wall to the corner of square microchannels. This drainage force causes a very thin liquid film to remain on the tube wall. Surface tension, liquid viscosity, and liquid conductivity are the major factors affecting the flow boiling and condensation heat transfer in square microchannels.
[1] E. Union, Regulation (EU) No 517/2014 of the European Parliament and the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006, Official Journal of the European Union, Vol. L 150, pp. 195-230, 2014.
[2] B. Minor and M. Spatz, HFO-1234yf low GWP refrigerant update, 2008.
[3] G. Moreno, S. Narumanchi, C. King, Pool boiling heat transfer characteristics of HFO-1234yf on plain and microporous-enhanced surfaces, Journal of heat transfer, Vol. 135, No. 11, 2013.
[4] K.T. Ooi, Compressor Performance Comparison When Using R134 and R1234YF as Working Fluids, 2012.
[5] J. Gohel and R. Kapadia, Thermodynamic cycle analysis of mobile air conditioning system using R1234yf as an alternative replacement of R134a, Adv Automob Eng, Vol. 5, No. 1, pp. 1-11, 2016.
[6] Y. Lee and D. Jung, A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications, Applied Thermal Engineering, Vol. 35, pp. 240-242, 2012.
[7] P. Rajendran, S. Sidney, I. Ramakrishnan, M.L. Dhasan, Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO-1234yf as a refrigerant, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol., pp. 0954408919881236, 2019.
[8] D. Sánchez, R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, E. Torrella, Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives, International Journal of Refrigeration, Vol. 74, pp. 269-282, 2017.
[9] A. Sethi, E.V. Becerra, S.Y. Motta, Low GWP R134a replacements for small refrigeration (plug-in) applications, international journal of refrigeration, Vol. 66, pp. 64-72, 2016.
[10] E. Lemmon, M. Huber, M. McLinden, REFPROP 9.1, NIST Standard Reference Database, Vol. 23, 2013.
[11] C.-Y. Yang and T.-Y. Lin, Heat transfer characteristics of water flow in microtubes, Experimental Thermal and Fluid Science, Vol. 32, No. 2, pp. 432-439, 2007.
[12] C.-Y. Yang, J.-C. Wu, H.-T. Chien, S.-R. Lu, Friction characteristics of water, R-134a, and air in small tubes, Microscale Thermophysical Engineering, Vol. 7, No. 4, pp. 335-348, 2003.
[13] S. Kandlikar and M. Steinke, Predicting heat transfer during flow boiling in minichannels and microchannels, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Vol. 109, No. Pt. 1, 2003.
[14] S. Azarhazin, B. Sajadi, H. Fazelnia, M.A.A. Behabadi, S. Zakeralhoseini, Boiling heat transfer coefficient and pressure drop of R1234yf flow inside smooth flattened tubes: An experimental study, Applied Thermal Engineering, Vol. 165, pp. 114595, 2020.
[15] B. Sajadi, M. Najafizadeh, M. Soleimani, M.A. Behabadi, J. Naserinejad, The effect of wire-coil inserts on the heat transfer and pressure drop of R1234yf flow boiling, Applied Thermal Engineering, Vol. 152, pp. 615-623, 2019.
[16] A. Diani, S. Mancin, M. Balcon, E. Savio, L. Rossetto, R1234yf flow boiling heat transfer in a rectangular channel heated from the bottom, Heat Transfer Engineering, Vol. 39, No. 3, pp. 198-207, 2018.
[17] S. Mancin, A. Diani, S. Vezzù, L. Rossetto, Flow boiling heat transfer of R1234yf on a microparticle coated copper surface, Science and Technology for the Built Environment, Vol. 22, No. 8, pp. 1156-1166, 2016.
[18] M.-C. Lu, J.-R. Tong, C.-C. Wang, Investigation of the two-phase convective boiling of HFO-1234yf in a 3.9 mm diameter tube, International Journal of Heat and Mass Transfer, Vol. 65, pp. 545-551, 2013.
[19] G.A. Longo, S. Mancin, G. Righetti, C. Zilio, R1234yf and R1234ze (E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis, International Journal of Refrigeration, Vol. 108, pp. 336-346, 2019.
[20] A. Diani, S. Mancin, L. Rossetto, Flow boiling heat transfer of R1234yf inside a 3.4 mm ID microfin tube, Experimental Thermal and Fluid Science, Vol. 66, pp. 127-136, 2015.
[21] A. Diani, A. Cavallini, L. Rossetto, R1234yf flow boiling heat transfer inside a 2.4-mm microfin tube, Heat Transfer Engineering, Vol. 38, No. 3, pp. 303-312, 2017.
[22] M.A. Kedzierski and D. Kang, Horizontal convective boiling of R1234yf, R134a, and R450A within a micro-fin tube, International Journal of Refrigeration, Vol. 88, pp. 538-551, 2018.
[23] K.W. Kim, N.B. Chien, K.-I. Choi, J.-T. Oh, Measurement and correlation of boiling heat transfer coefficient of R-1234yf in horizontal small tubes, Journal of Mechanical Science and Technology, Vol. 28, No. 10, pp. 4301-4308, 2014.
[24] K.E. Gungor and R. Winterton, A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer, Vol. 29, No. 3, pp. 351-358, 1986.
[25] S. Bortolin, M. Azzolin, D. Del Col, Flow boiling of halogenated olefins inside a square cross-section microchannel, Science and Technology for the Built Environment, Vol. 22, No. 8, pp. 1238-1253, 2016.
[26] J.-T. Oh, K.-I. Choi, C.B. Nguyen, K.-w. Kim, Boiling Heat Transfer of R-1234yf in Horizontal Circular Small Tubes, in International Refrigeration and Air Conditioning Conference. 2012. p. 1296.
[27] K.-I. Choi, N.-B. Chien, J.-T. Oh, Heat transfer coefficient during evaporation of R-1234yf, R-134a, and R-22 in horizontal circular small tubes, Advances in Mechanical Engineering, Vol. 5, pp. 132397, 2013.
[28] S. Mortada, A. Zoughaib, C. Arzano-Daurelle, D. Clodic, Boiling heat transfer and pressure drop of R-134a and R-1234yf in minichannels for low mass fluxes, International Journal of Refrigeration, Vol. 35, No. 4, pp. 962-973, 2012.
[29] C. Dang, S. Saitoh, Y. Nakamura, M. Li, E. Hihara. Boiling heat transfer of HFO-1234yf flowing in smooth small-diameter horizontal tube. in International Symposium on Next-generation Air Conditioning and Refrigeration Technology, Tokyo, Japan, pp. 17-19, 2010.
[30] S. Saitoh, C. Dang, Y. Nakamura, E. Hihara, Boiling heat transfer of HFO-1234yf flowing in a smooth small-diameter horizontal tube, International Journal of Refrigeration, Vol. 34, No. 8, pp. 1846-1853, 2011.
[31] D. Jige and N. Inoue, Boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel, International Journal of Heat and Fluid Flow, Vol. 78, pp. 108433, 2019.
[32] Z. Anwar, B. Palm, R. Khodabandeh, Flow boiling heat transfer, pressure drop and dryout characteristics of R1234yf: Experimental results and predictions, Experimental Thermal and Fluid Science, Vol. 66, pp. 137-149, 2015.
[33] D.F. Sempértegui-Tapia and G. Ribatski, Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel, International Journal of Heat and Mass Transfer, Vol. 108, pp. 2417-2432, 2017.
[34] D. Del Col, S. Bortolin, D. Torresin, A. Cavallini, Flow boiling of R1234yf in a 1 mm diameter channel, International journal of refrigeration, Vol. 36, No. 2, pp. 353-362, 2013.
[35] J. Li, C. Dang, E. Hihara, Up-flow boiling of R1234yf in aluminum multi-port extruded tubes, International Journal of Heat and Mass Transfer, Vol. 114, pp. 826-836, 2017.
[36] G.A. Longo, Vaporisation of the low GWP refrigerant HFO1234yf inside a brazed plate heat exchanger, International journal of refrigeration, Vol. 35, No. 4, pp. 952-961, 2012.
[37] J. Zhang, A. Desideri, M.R. Kærn, T.S. Ommen, J. Wronski, F. Haglind, Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units, International Journal of Heat and Mass Transfer, Vol. 108, pp. 1787-1801, 2017.
[38] M. Cooper, Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties, Advances in heat transfer, Vol. 16, pp. 157-239, 1984.
[39] M. Shah, A general correlation for heat transfer during film condensation inside pipes, International Journal of heat and mass transfer, Vol. 22, No. 4, pp. 547-556, 1979.
[40] H. Fazelnia, B. Sajadi, S. Azarhazin, M.A. Behabadi, S. Zakeralhoseini, Experimental study of the heat transfer coefficient and pressure drop of R1234yf condensing flow in flattened smooth tubes, International Journal of Refrigeration, Vol. 106, pp. 120-132, 2019.
[41] L. Wang, C. Dang, E. Hihara, Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO1234yf in a horizontal tube, International Journal of Refrigeration, Vol. 35, No. 5, pp. 1418-1429, 2012.
[42] G.A. Longo, S. Mancin, G. Righetti, C. Zilio, Saturated vapour condensation of R134a inside a 4 mm ID horizontal smooth tube: Comparison with the low GWP substitutes R152a, R1234yf and R1234ze (E), International Journal of Heat and Mass Transfer, Vol. 133, pp. 461-473, 2019.
[43] A. Diani, A. Cavallini, L. Rossetto, R1234yf condensation inside a 3.4 mm ID horizontal microfin tube, International Journal of Refrigeration, Vol. 75, pp. 178-189, 2017.
[44] A. Diani, M. Campanale, A. Cavallini, L. Rossetto, Low GWP refrigerants condensation inside a 2.4 mm ID microfin tube, International Journal of Refrigeration, Vol. 86, pp. 312-321, 2018.
[45] F. Illán-Gómez, A. Lopez-Belchi, J. García-Cascales, F. Vera-García, Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a, International Journal of Refrigeration, Vol. 51, pp. 12-23, 2015.
[46] T. Patel, A. Parekh, P. Tailor, Experimental analysis of condensation heat transfer and frictional pressure drop in a horizontal circular mini channel, Heat and Mass Transfer, Vol., pp. 1-22, 2019.
[47] D. Del Col, D. Torresin, A. Cavallini, Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf, International Journal of refrigeration, Vol. 33, No. 7, pp. 1307-1318, 2010.
[48] K.-J. Park, D.G. Kang, D. Jung, Condensation heat transfer coefficients of R1234yf on plain, low fin, and Turbo-C tubes, International Journal of Refrigeration, Vol. 34, No. 1, pp. 317-321, 2011.
[49] G.A. Longo and C. Zilio, Condensation of the low GWP refrigerant HFC1234yf inside a brazed plate heat exchanger, International Journal of Refrigeration, Vol. 36, No. 2, pp. 612-621, 2013.
[50] C.-Y. Yang and C.-C. Shieh, Flow pattern of air–water and two-phase R-134a in small circular tubes, International Journal of Multiphase Flow, Vol. 27, No. 7, pp. 1163-1177, 2001.
[51] G.E. Alves, Cocurrent liquid-gas flow in a pipe-line contactor, Chemical Engineering Progress, Vol. 50, No. 9, pp. 449-456, 1954.
[52] G.F. Hewitt and N.S. Hall-Taylor, Annular two-phase flow, Pergamon Press, Headington Hill Hall, Oxford, 1970.
[53] K. Triplett, S. Ghiaasiaan, S. Abdel-Khalik, D. Sadowski, Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns, International Journal of Multiphase Flow, Vol. 25, No. 3, pp. 377-394, 1999.
[54] O. Baker. Design of pipelines for the simultaneous flow of oil and gas. in Fall Meeting of the Petroleum Branch of AIME, Society of Petroleum Engineers, 1953.
[55] Y. Taitel and A. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas‐liquid flow, AIChE Journal, Vol. 22, No. 1, pp. 47-55, 1976.
[56] V.P. Carey, Liquid-vapor phase-change phenomena, 1992.
[57] C. Martin Callizo, Flow boiling heat transfer in single vertical channels of small diameter, 2010.
[58] H. Li and P. Hrnjak, Flow Visualization of R134a, R1234ze (E), and R1234yf in microchannel tube, in 17th International Refrigeration and Air Conditioning Conference 2018: Purdue. p. 1-10.
[59] M. Padilla, R. Revellin, P. Haberschill, A. Bensafi, J. Bonjour, Flow regimes and two-phase pressure gradient in horizontal straight tubes: Experimental results for HFO-1234yf, R-134a and R-410A, Experimental Thermal and Fluid Science, Vol. 35, No. 6, pp. 1113-1126, 2011.
[60] L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I—A new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer, Vol. 48, No. 14, pp. 2955-2969, 2005.
[61] W. Rohsenow and A. Bergles, The determination of forced-convection surface-boiling heat transfer, J. Heat Transfer, Trans. ASME, Series C, Vol. 86, pp. 365-372, 1964.
[62] T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, 2011.
[63] B.R. Munson, D.F. Young, T.H. Okiishi, Fundamentals of fluid mechanics, New York, Vol. 3, No. 4, 1990.
[64] W.M. Kays and A.L. London, Compact heat exchangers, McGraw-Hill, New York, NY, 1984.
[65] J.G. Collier and J.R. Thome, Convective boiling and condensation, Oxford university press, New York, 1994.
[66] S. Zivi. Estimation of steady-state steam void-fraction by means of the principal of minimum entropy production, ASME reprint 63-HT-16, 6th Nat. in Heat Transfer Conf., AIChE-ASME, Boston, 1963.
[67] D. Briggs and E.H. Young. Modified Wilson plot techniques for obtaining heat transfer correlations for shell and tube heat exchangers. in Chemical Engineering Progress Symposium Series, pp. 35-45, AIChE, New York, 1969.
[68] F.W. Dittus and L.M.K. Boelter, Publications on Engineering, University of California at Berkeley, Berkeley, CA, Vol. 2, pp. 443-461, 1930.
[69] R.J. Moffat, Describing the uncertainties in experimental results, Experimental thermal and fluid science, Vol. 1, No. 1, pp. 3-17, 1988.
[70] H. Blasius, Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens: insbesondere aus den Laboratorien der technischen Hochschulen, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-41, 1913.
[71] G. Filonenko, On friction factor for a smooth tube, in All Union Thermotechnical Institute (Izvestija VTI, No 10). 1948: Russia.
[72] V. Gnielinski, New equations for heat and mass-transfer in turbulent pipe and channel flow, International chemical engineering, Vol. 16, No. 2, pp. 359-368, 1976.
[73] L. Friedel. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. in European two-phase flow group meeting, Ispra, Italy, pp. Paper E2, 1979.
[74] M. Zhang and R.L. Webb, Correlation of two-phase friction for refrigerants in small-diameter tubes, Experimental Thermal and Fluid Science, Vol. 25, No. 3, pp. 131-139, 2001.
[75] M. Shah, Chart correlation for saturated boiling heat transfer: equations and further study, ASHRAE Trans.;(United States), Vol. 88, No. CONF-820112-, 1982.
[76] J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Industrial & engineering chemistry process design and development, Vol. 5, No. 3, pp. 322-329, 1966.
[77] Y.-Y. Hsu and R.W. Graham, Transport processes in boiling and two-phase systems, including near-critical fluids, Washington, DC, Hemisphere Publishing Corp.; New York, McGraw-Hill Book Co., 1976., Vol., 1976.
[78] M.M. Shah, An improved and extended general correlation for heat transfer during condensation in plain tubes, Hvac&R Research, Vol. 15, No. 5, pp. 889-913, 2009.
[79] A. Cavallini, D.D. Col, L. Doretti, M. Matkovic, L. Rossetto, C. Zilio, G. Censi, Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design, Heat transfer engineering, Vol. 27, No. 8, pp. 31-38, 2006.
[80] S.G. Kandlikar and P. Balasubramanian, An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels, Heat Transfer Engineering, Vol. 25, No. 3, pp. 86-93, 2004.
[81] Z. Liu and R. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, International journal of heat and mass transfer, Vol. 34, No. 11, pp. 2759-2766, 1991.
[82] W. Akers, H. Deans, O. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Progr., Vol. 54, 1958.
[83] S. Bortolin, E. Da Riva, D. Del Col, Condensation in a square minichannel: application of the VOF method, Heat Transfer Engineering, Vol. 35, No. 2, pp. 193-203, 2014.
[84] H. Wang and J.W. Rose, Theory of heat transfer during condensation in microchannels, International Journal of Heat and Mass Transfer, Vol. 54, No. 11-12, pp. 2525-2534, 2011.
[85] A. Mukherjee, S. Kandlikar, Z. Edel, Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel, International Journal of Heat and Mass Transfer, Vol. 54, No. 15-16, pp. 3702-3718, 2011.
[86] E. Da Riva and D. Del Col, Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel, Journal of Heat Transfer, Vol. 134, No. 5, pp. 051019, 2012.
[87] S.S. Mehendale, A.M. Jacobi, R.K. Shah, Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design, Applied Mechanics Reviews, Vol. 53, No. 7, pp. 175-193, 2000.
[88] S.G. Kandlikar and W.J. Grande, Evolution of Microchannel Flow Passages--Thermohydraulic Performance and Fabrication Technology, Heat transfer engineering, Vol. 24, No. 1, pp. 3-17, 2003.
[89] P.A. Kew and K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied thermal engineering, Vol. 17, No. 8-10, pp. 705-715, 1997.
[90] S. Basu, S. Ndao, G.J. Michna, Y. Peles, M.K. Jensen, Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics, Journal of Heat Transfer, Vol. 133, No. 5, pp. 051502, 2011.