跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王凱民
Kai-Min Wang
論文名稱: 黏土層中懸臂式擋土壁開挖行為探討
Study on Behaviors of Cantilever Retaining Wall during Excavation in Clay Ground.
指導教授: 李崇正
Chung-Jung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 171
中文關鍵詞: 懸臂式擋土壁壁體變形地盤變位開挖
外文關鍵詞: Wall deformation, Ground deformations, Excavation, Cantilever retaining wall
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在擋土開挖的施工過程中,由於壁體產生變位將引起側向土壓力的解放,因而產生周圍地盤沉陷或側向變形,造成鄰近建物傾斜及管線損壞。因此,為了使工程師可提出更為有效且經濟的建物保護計畫,必須先行探討開挖所引致的地盤變位與壁體變形。
    本研究利用離心模型試驗,探討於黏土層中以懸臂式擋土壁作為擋土設施並進行開挖,對壁體與鄰近地盤之影響;主要針對開挖深度、貫入深度及土壤強度等不同變數,進行懸臂式擋土壁開挖行為之相關研究與比較分析。
    試驗結果顯示,黏土不排水剪力強度、開挖深度與貫入深度對地盤變位與壁體變形影響甚鉅。黏土層中懸臂式擋土壁開挖引致地表沉陷槽屬於三角槽型,沉陷影響範圍達5.2倍開挖深度之遠,並可利用樁頂水平變位求得壁後地表最大沉陷量,進而推估出壁後不同位置處之地表沉陷量。開挖引致壁體變形過程中,開挖面以下擋土壁有一固定不動點,隨著開挖深度增加,該不動點逐漸往下移動。樁頂至開挖面間的壁體承受正彎矩值,壁體正彎矩之最大值發生於開挖面處。


    The lateral earth pressure will be released from the deformation of cantilever retaining wall during excavation. In consequence of the pressure decreasing, the surface settlement and lateral deformation may occur, and may endanger adjacent structures and lifelines nearby. Therefore, the movements of ground surface and the deformations of retaining wall induced by deep excavation must be studied, and then engineers can bring up an effective, economical and safety countermeasure for building protections.
    A series of centrifuge model tests were performed to assess the influence of depth of excavation and of penetration and of soil strength on the behavior of cantilever retaining wall standing in clay ground.
    From this study, it can be seen that the shear strength of clay soil, the depth of excavation, and the penetration depth influence the deformations of ground and the behavior of cantilever wall significantly. The shape of settlement trough induced by excavation is a spandrel type. The maximum surface settlement behind the wall can be found from the horizontal displacement of the top of the wall; and further, the surface settlement behind the wall with different distance from the wall can be predicted. There is a fixed point on the wall under the excavation level. The fixed point will move downward until the wall fails. The cantilever wall experiences the positive bending moment above the excavation level, and the maximum positive bending moment appears near the excavation level.

    中 文 摘 要 I 英 文 摘 要 II 目 錄 III 表 目 錄 V 圖 目 錄 VI 照 片 目 錄 IX 符 號 說 明 X 第一章 緒論 1 1-1 緣起 1 1-2 研究動機 3 1-3 研究架構 4 1-4 論文內容 4 第二章 文獻回顧 6 2-1 懸臂式擋土壁分析 6 2-1-1 內擠破壞分析 7 2-2 開挖引致之地表沉陷 8 2-2-1 開挖引致之地表沉陷特性 8 2-3 數值分析方法及物理模型試驗 14 2-3-1 數值分析方法 15 2-3-2 1g下之物理模型試驗 16 2-3-3 離心模型試驗 17 2-4 水力坡降壓密法 22 2-5 離心模型基本原理 24 2-5-1 離心模型之基本相似律 25 2-5-2 離心模型試驗之模型模擬 27 第三章 試驗土樣、儀器設備及試驗方法 49 3-1 試驗土樣 49 3-2 試驗儀器及相關設備 49 3-2-1 地工離心機 49 3-2-2 試體壓密儀 51 3-2-3 模型試驗箱 51 3-2-4 模擬開挖系統 52 3-2-5 相關量測儀器 54 3-3 試體準備與量測儀器配置 56 3-3-1 重模試體準備 56 3-3-2 量測儀器配置 58 3-4 試驗方法與步驟 59 3-5 無圍壓縮試驗及含水量量測 60 3-6 樁身彎矩分布曲線迴歸方法之選擇 61 3-6-1 三次多項式函數法 62 第四章 試驗結果與分析 87 4-1 試驗種類與試體床描述 87 4-1-1 離心模型試驗類別 87 4-1-2土壤強度之標定 88 4-2 地表沉陷槽 89 4-2-1 地表沈陷槽型式 90 4-2-2 地表沉陷槽分布範圍 94 4-2-3 張力裂縫 98 4-2-4 地表沉陷槽與地下沉陷之關係 100 4-3 壁體彎矩分布 102 4-4 地盤反力與壁體變形分析 105 4-5 孔隙水壓力 110 第五章 結論與建議 149 5-1 結論 149 5-2 建議 151 參考文獻 153

    [1]李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
    [2]林俊雄,「離心模型黏土試體之準備與強度標定」,碩士論文,國立中央大學土木工程學系,中壢(1995)。
    [3]游文輝,「砂土層中井樁承受反覆水平荷重之初步研究」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
    [4]莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
    [5]陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
    [6]陳志豪,「懸臂式擋土牆開挖之離心模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
    [7]歐晉德、石強、謝旭昇,「深開挖擋土連續壁設計模式」,地工技術雜誌,第二十一期,第10-17頁(1988)。
    [8]歐章煜、謝百鉤、唐雨耕,「深開挖穩定分析與變形分析」,地工技術雜誌,第七十六期,第25-38頁(1999)。
    [9]歐章煜、謝百鉤,「以經驗公式預測台北盆地深開挖引致之地表沉陷」,地工技術雜誌,第五十三期,第5-14頁(1996)。
    [10]歐章煜,深開挖工程分析設計與實務,科技圖書,台北(2002)。
    [11]謝百鉤,「黏土層深開挖引致地盤最大位移預測」,中國土木水利工程學刊,第十三卷,第三期,第489-498頁(2001)。
    [12]Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
    [13]Andeson, W.F., Hanna, T.H., and Ponniah, D.A., “Laboratory-scale test on anchored retaining walls supporting backfill with surface loading,” Canadian Geotechnical Journal, Vol. 19, pp. 213-224 (1982).
    [14]Bowles, J.E., Foundation analysis and design, McGraw-Hill, New York (1986).
    [15]Bolton, M.D., and Powrie, W., “Collapse of diaphragm walls in clay,” Geotechnique, Vol. 37, No. 3, pp. 335-353 (1987).
    [16]Clough, G.W., and Denby, G.M., “Stabilising term design for temporary walls in clay,” Journal of Geotechnical Engineering, ASCE, Vol. 103, No. GT2, pp. 75-90 (1977).
    [17]Clough, G.W., and O’Rourke T.D., “Construction induced movement of insitu walls,” Proceedings Design and performance of earth retainingst structures, ASCE, pp. 439-470 (1990).
    [18]Frydman, S., and Baker, R., “Modelling the soil nailing-Excavation process,” centrifuge 94, Rotterdam, pp. 669-674 (1994).
    [19]Georgiadis, M., and Anagnostopoulos, C., “Displacement of structures adjacent to cantilever sheet pile walls,” Soil and Foundations, Vol. 39, No. 2, pp. 99-104 (1999).
    [20]Hanko, M., and Nakagawa, S., “Design method of cantilever walls for deep excavation-A survey on Japanese codes,” Underground Construction in Soft Ground, Rotterdam, pp. 319-322 (1995).
    [21]Hashash, Y.M.A., and Whittle, J., “Ground movement prediction for deep excavation in soft clay,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 6, pp. 474-486 (1996).
    [22]Henkel, D.J., “The shear strength of saturated remoulded clays,” Proceedings, Research conference on Shear Strength of Cohesive Soils, Boulder, Colorado, pp. 533-560 (1960).
    [23]Kimura, T., Takemura, J., Hiro-oka, A., Suemasa, N., and Kohda, M., “Excavation in soft clay using an in-flight excavator,” Centrifuge 94, Rotterdam, pp. 649-654 (1994).
    [24]Kohsaka, N., and Ishizuka, K., “Stability of bottom during deep excavations-A survey on Japanese codes,” Underground Construction in Soft Ground, Rotterdam, pp. 323-328 (1995).
    [25]Leung, C. F., Chow, Y. K., and Shen, R. F., “Behavior of pile subject to excavation-induced soil movement,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp. 947-954 (2000).
    [26]Liu, J., “Centrifugal modeling of multi-braced and unbraced excavation failures,” Physical Modelling in Geotechnics Canadian, pp. 841-845 (2002).
    [27]McNamara, A. M., and Taylor, R. N., “Use of heave reducing piles to control ground movements around excavations,” Physical Modelling in Geotechnics, Canadian, pp. 847-852 (2002).
    [28]Nakai, T., Kawano, H., Murata, K., Banno, M., and Hashimoto, T., “Model tests and numerical simulation of braced excavation in sandy ground:Influences of construction history, wall friction, wall stiffness, strut position, strut position and strut stiffness,” Soil and Foundations, Vol. 39, No. 3, pp. 1-12 (1999).
    [29]Nahas, A.EL., and Takemura, J., “External stability of open excavation in soft clay with DM self supported walls,” Soil and Foundations, Vol. 42, No. 1, pp. 53-69 (2002).
    [30]Osman, A. S., and Bolton, M. D., “A new design method for retaining walls in clay,” Canadian Geotechnical Journal, Vol. 41, pp. 451-465 (2004)
    [31]Powrie, W., and Kantartzi, C., “Ground response during diaphragm wall installation in clay: centrifuge model test,” Geotechnique, Vol. 46, No. 4, pp. 725-739 (1996).
    [32]Powrie, W. “Limit equilibrium analysis of embedded retaining wall,” Geotechnique, Vol. 46, No. 4, pp. 709-723 (1996).
    [33]Powrie, W., Richards, D.J., and Kantartzi, C., “Modelling diaphragm wall installation and excavation processes,” Centrifuge 94, Rotterdam, pp. 655-661 (1994).
    [34]Peck, R. B., “Deep Excavation and tunneling in soft ground,” Proc. 7th Int. Conf. On Soil Mech. Found. Eng., State of Art Volume, pp. 225-290 (1969).
    [35]Poh, T.Y., Goh, A.T.C., and Wong, I.N., “Ground movements associated with wall construction:case histories,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 12, pp. 1061-1069 (2001).
    [36]Seok, W.J., Kim, O.Y., Chung, C.K., and Kim, M.M., “Evaluation of ground and building settlement near braced excavation sites by model testing,” Canadian Geotechnical Journal, Vol. 38, pp. 1127-1133 (2001).
    [37]Tani, K., “Stability of Skirted Gravity Foundations on Very Soft Clay,” Ph. D. Dissertation, Department of Engineering, University of Manchester (1990)
    [38]Tsai, J.S., Jou, L.D., and Hsieh, H.S. “A full-scale stability experiment on a diaphragm wall trench,” Canadian Geotechnical Journal, Vol. 37, pp. 379-392 (2000).
    [39]Toyosawa, Y., Horii, N., Suemasa, N., and Katada, T., “Failure mechanism of anchored retaining wall,” Centrifuge 98, Kusakabe and Takemura (eds), pp. 667-672 (1998).
    [40]Takemura, J., Kondoh, M., Esaki, T., Kouda, M., and Kusakabe, O., “Centrifuge model tests on double propped wall excavation in soft clay,” Soil and Foundations, Vol. 39, No. 3, pp. 75-87 (1999).
    [41]Zelikson, A., “Geotechnical models using the hydraulic gradient similarity method,” Geotechnique, Vol. 9, No. 4, pp. 495-508 (1969).
    [42]Zhang, S. D., and Zhang, H. D., “Stability of deep excavations in soft clay,” Centrifuge 94, Rotterdam, pp. 643-648 (1994).

    QR CODE
    :::