| 研究生: |
曾月逸 Yueh-Yi Tseng |
|---|---|
| 論文名稱: |
製備金屬有機骨架材料作為新興吸附劑應用於檢測環境水樣中防腐劑 Parabens殘留之研究 |
| 指導教授: |
丁望賢
Wang-Hsien Ding |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 綠色分析化學 、防腐劑Parabens 、金屬有機骨架材料 、分散式微固相萃取法 |
| 外文關鍵詞: | Green Analytical Chemistry, Parabens, Metal Organic Frameworks, Dispersive micro solid phase extraction |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發出一套簡單快速且符合綠色化學的萃取方法,用於檢測環境水樣中防腐劑Parabens的殘留。Parabens廣泛應用於個人護理產品中,其乃一種內分泌干擾物質,經使用後產生的民生廢水排放至自然環境,其殘留會對人類健康和生態環境帶來不良影響。
本研究使用的是近年十分熱門的吸附材料——金屬有機骨架材料(Metal Organic Frameworks, MOFs),其具有高比表面積、良好的熱穩定性及多孔結構等特性。而本研究透過無溶劑法成功快速製備MIL-101(Cr),作為分散式微固相萃取法(Dispersive micro solid phase extraction,簡稱D-µ-SPE)之吸附劑,其表現出良好的吸附效果和穩定性,並利用高效液相層析串聯電灑游離(-)-四極桿飛行時間式質譜儀(UHPLC-ESI(-)-QTOF-MS)進行後續的分析檢測。
藉由Multilevel categoric design(MLCD)和Box-Behnkne Design(BBD)中變異數分析(Analysis of variance, 簡稱ANOVA),針對實驗條件進行優化,減少實驗時間和溶劑使用量,以檢測水樣中的7種Parabens。
本方法的偵測極限(LOD)為0.002-0.5 ng/mL,展現優異的靈敏度;在Intra-day和Inter-day的測試中相對標準偏差(RSD)低於8 %,萃取回收率介於61%-120%之間,表現出良好的再現性和穩定性,並於真實環境水樣中檢測到防腐劑MeP和PrP的微量殘留。
整體而言,本研究方法使用無溶劑合成的金屬有機骨架材料,並搭配分散式微固相萃取法,實驗過程大幅降低實驗時間和有機溶劑使用量,符合綠色化學之準則,是一種簡易、高效且對環境友善檢測防腐劑Parabens的分析方法。
Parabens are widely used in personal care products. They have been classified as endocrine disrupting chemicals (EDCs). Wastewater generated by the people's livelihood is discharged into the natural environment, and the residues will have adverse effects on human health and the ecological environment.
In this study, we prepared metal-organic frameworks (Metal Organic Frameworks, MOFs) as adsorbents, which is a group of popular novel adsorbents in recent years. MOFs have the characteristics of high surface area, good thermal stability and porous structure. In this study, MIL-101(Cr) was successfully and quickly prepared by a solvent-free method. As an adsorbent for dispersive micro solid phase extraction (D-µ-SPE), MIL-101(Cr) displayed good adsorption effect and stability. Ultrahigh-performance liquid chromatography and electrospray ionization (-)-quadrupole time-of-flight mass spectrometer (UHPLC-ESI(-)-QTOF-MS) was used for detection and quantitation.
By means of Analysis of variance (ANOVA) in Multilevel categoric design (MLCD) and Box-Behnkne Design (BBD), the experimental conditions were optimized and the experimental time and solvent usage were reduced. The developed method was validated after optimization. The method provided low limit of detection (LOD), range from 0.002-0.5 ng/mL, and showed excellent sensitivity. The relative standard deviation (RSD) is less than 8% and the extraction recovery is range from 61% to 120% for both intra- and inter-day analysis, which revealed good reproducibility and stability. The method was applied for the detection of parabens residues in real water samples successfully.
衛生福利部,化粧品防腐劑成分名稱及使用限制表,2019。
Almeida, C.; Nogueira, J., Determination of trace levels of parabens in real matrices by bar adsorptive microextraction using selective sorbent phases. Journal of Chromatography A 2014, 1348, 17-26.
Becerra-Herrera, M.; Miranda, V.; Arismendi, D.; Richter, P., Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta 2018, 176, 551-557.
Bhattacharjee, S.; Chen, C.; Ahn, W.S., Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Advances 2014, 4(94), 52500-52525.
Błędzka, D.; Gromadzińska, J.; Wąsowicz, W., Parabens. From environmental studies to human health. Environment International 2014, 67, 27-42.
Bolujoko, N. B.; Unuabonah, E. I.; Alfred, M. O.; Ogunlaja, A.; Ogunlaja, O. O.; Omorogie, M. O.; Olukanni, O. D., Toxicity and removal of parabens from water: A critical review. Science of The Total Environment 2021, 792, 148092.
Box, G. E.; Behnken, D. W., Some new three level designs for the study of quantitative variables. Technometrics 1960, 2(4), 455-475.
Bromberg, L.; Diao, Y.; Wu, H.; Speakman, S. A.; Hatton, T. A., Chromium (III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties. Chemistry of Materials 2012, 24(9), 1664-1675.
Çabuk, H.; Akyüz, M.; Ata, Ş., A simple solvent collection technique for a dispersive liquid–liquid microextraction of parabens from aqueous samples using low‐density organic solvent. Journal of Separation Science 2012, 35(19), 2645-2652.
Dean, A.; Lewis, S., Comparison of group screening strategies for factorial experiments. Computational Statistics & Data Analysis 2002, 39(3), 287-297.
Dias, A. N.; da Silva, A. C.; Simão, V.; Merib, J.; Carasek, E., A novel approach to bar adsorptive microextraction: Cork as extractor phase for determination of benzophenone, triclocarban and parabens in aqueous samples. Analytica Chimica Acta 2015, 888, 59-66.
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309(5743), 2040-2042.
Gałuszka, A.; Migaszewski, Z. M.; Konieczka, P.; Namieśnik, J., Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends in Analytical Chemistry 2012, 37, 61-72.
Ghasemi, E.; Sillanpää, M., Ultrasound-assisted solid-phase extraction of parabens from environmental and biological samples using magnetic hydroxyapatite nanoparticles as an efficient and regenerable nanosorbent. Microchimica Acta 2019, 186, 1-7.
Gonzalez-Hernandez, P.; Gutierrez-Serpa, A.; Lago, A. B.; Estevez, L.; Ayala, J. H.; Pino, V.; Pasan, J., Insights into Paraben Adsorption by Metal–Organic Frameworks for Analytical Applications. ACS Applied Materials & Interfaces 2021, 13(38), 45639-45650.
Gülle, S.; Ulusoy, H. I.; Kabir, A.; Tartaglia, A.; Furton, K. G.; Locatelli, M.; Samanidou, V. F., Application of a fabric phase sorptive extraction-high performance liquid chromatography-photodiode array detection method for the trace determination of methyl paraben, propyl paraben and butyl paraben in cosmetic and environmental samples. Analytical Methods 2019, 11(48), 6136-6145.
Guo, Y.; Kannan, K., A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environmental Science & Technology 2013, 47(24), 14442-14449.
Guo, Y.; Wang, L.; Kannan, K., Phthalates and parabens in personal care products from China: concentrations and human exposure. Archives of Environmental Contamination and Toxicology 2013, 66, 113-119.
Han, L.; Qi, H.; Zhang, D.; Ye, G.; Zhou, W.; Hou, C.; Xu, W.; Sun, Y., A facile and green synthesis of MIL-100 (Fe) with high-yield and its catalytic performance. New Journal of Chemistry 2017, 41(22), 13504-13509.
Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.Y.; Seo, Y.K.; Chang, J.S.; Grenèche, J.M.; Margiolaki, I.; Férey, G., Synthesis and catalytic properties of MIL-100 (Fe), an iron (III) carboxylate with large pores. Chemical Communications 2007,(27), 2820-2822.
Huang, C.Y.; Song, M.; Gu, Z.Y.; Wang, H.-F.; Yan, X.P., Probing the Adsorption Characteristic of Metal–Organic Framework MIL-101 for Volatile Organic Compounds by Quartz Crystal Microbalance. Environmental Science & Technology 2011, 45(10), 4490-4496.
Huo, S.H.; Yan, X.P., Facile magnetization of metal–organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Analyst 2012, 137(15), 3445-3451.
Jhung, S. H.; Lee, J. H.; Yoon, J. W.; Serre, C.; Férey, G.; Chang, J. S., Microwave synthesis of chromium terephthalate MIL‐101 and its benzene sorption ability. Advanced Materials 2007, 19(1), 121-124.
Jia, X.; Zhao, P.; Ye, X.; Zhang, L.; Wang, T.; Chen, Q.; Hou, X., A novel metal-organic framework composite MIL-101 (Cr)@ GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples. Talanta 2017, 169, 227-238.
Kökçam-Demir, Ü.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C., Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews 2020, 49(9), 2751-2798.
Lei, Y.; Chen, B.; You, L.; He, M.; Hu, B., Polydimethylsiloxane/MIL-100 (Fe) coated stir bar sorptive extraction-high performance liquid chromatography for the determination of triazines in environmental water samples. Talanta 2017, 175, 158-167.
Leng, K.; Sun, Y.; Li, X.; Sun, S.; Xu, W., Rapid synthesis of metal–organic frameworks MIL-101 (Cr) without the addition of solvent and hydrofluoric acid. Crystal Growth & Design 2016, 16(3), 1168-1171.
Li, N.; Zhang, L.; Nian, L.; Cao, B.; Wang, Z.; Lei, L.; Yang, X.; Sui, J.; Zhang, H.; Yu, A., Dispersive micro-solid-phase extraction of herbicides in vegetable oil with metal–organic framework MIL-101. Journal of agricultural and food chemistry 2015, 63(8), 2154-2161.
Lu, N.; Wang, T.; Zhao, P.; Zhang, L.; Lun, X.; Zhang, X.; Hou, X., Experimental and molecular docking investigation on metal-organic framework MIL-101 (Cr) as a sorbent for vortex assisted dispersive micro-solid-phase extraction of trace 5-nitroimidazole residues in environmental water samples prior to UPLC-MS/MS analysis. Analytical and Bioanalytical Chemistry 2016, 408, 8515-8528.
Mashile, G. P.; Mpupa, A.; Nomngongo, P. N., In-syringe micro solid-phase extraction method for the separation and preconcentration of parabens in environmental water samples. Molecules 2018, 23(6), 1450.
Melo, L. P.; Queiroz, M. E. C., A molecularly imprinted polymer for microdisc solid-phase extraction of parabens from human milk samples. Analytical Methods 2013, 5(14), 3538-3545.
Mousavi, K. Z.; Yamini, Y.; Seidi, S., Dispersive liquid–liquid microextraction using magnetic room temperature ionic liquid for extraction of ultra-trace amounts of parabens. New Journal of Chemistry 2018, 42(12), 9735-9743.
Nasrollahpour, A.; Moradi, S.; Baniamerian, M., Vortex-assisted dispersive solid-phase microextraction using ionic liquid-modified metal-organic frameworks of PAHs from environmental water, vegetable, and fruit juice samples. Food Analytical Methods 2017, 10, 2815-2826.
Pastor-Belda, M.; Marín-Soler, L.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M., Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction. Journal of Chromatography A 2018, 1564, 102-109
Prichodko, A.; Janenaite, E.; Smitiene, V.; Vickackaite, V., Gas chromatographic determination of parabens after in-situ derivatization and dispersive liquid-liquid microextraction. Acta Chromatographica 2012, 24(4), 589-601.
Qi, C.; Cai, Q.; Zhao, P.; Jia, X.; Lu, N.; He, L.; Hou, X., The metal-organic framework MIL-101 (Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: application to a pharmacokinetic study. Journal of Chromatography A 2016, 1449, 30-38.
Rajabi, M.; Sarhadi, A.; Bazregar, M.; Asghari, A.; Mirparizi, E., Rapid derivatization and extraction of paraben preservatives by fast syringe-assisted liquid–liquid microextraction and their determination in cosmetic and aqueous sample solutions by gas chromatography. Analytical Methods 2017, 9(41), 5963-5969.
Ramírez, N.; Borrull, F.; Marcé, R. M., Simultaneous determination of parabens and synthetic musks in water by stir‐bar sorptive extraction and thermal desorption‐gas chromatography‐mass spectrometry. Journal of Separation Science 2012, 35(4), 580-588.
Russo, V.; Hmoudah, M.; Broccoli, F.; Iesce, M. R.; Jung, O.-S.; Di Serio, M., Applications of metal organic frameworks in wastewater treatment: a review on adsorption and photodegradation. Frontiers in Chemical Engineering 2020, 2, 581487.
Soni, M.; Carabin, I.; Burdock, G., Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology 2005, 43(7), 985-1015.
Stock, N.; Biswas, S., Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews 2012, 112(2), 933-969.
Tan, B.; Luo, Y.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y., Mixed-solvothermal synthesis of MIL-101 (Cr) and its water adsorption/desorption performance. Industrial & Engineering Chemistry Research 2019, 58(8), 2983-2990.
Terasaki, M.; Takemura, Y.; Makino, M., Paraben-chlorinated derivatives in river waters. Environmental Chemistry Letters 2012, 10, 401-406.
Villaverde-de-Sáa, E.; González-Mariño, I.; Quintana, J. B.; Rodil, R.; Rodríguez, I.; Cela, R., In-sample acetylation-non-porous membrane-assisted liquid–liquid extraction for the determination of parabens and triclosan in water samples. Analytical and Bioanalytical Chemistry 2010, 397, 2559-2568.
Wasserstein, R. L.; Lazar, N. A., The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician 2016, 70(2), 129-133.
Yamini, Y.; Saleh, A.; Rezaee, M.; Ranjbar, L.; Moradi, M., Ultrasound-assisted emulsification microextraction of various preservatives from cosmetics, beverages, and water samples. Journal of Liquid Chromatography & Related Technologies 2012, 35(18), 2623-2642.
Zhang, H.; Jieying, W.; Zhengji, L.; Fan, R.; Chen, Q.; Shan, X.; Jiang, C.; Sun, G., Extraction of phenylurea herbicides from rice and environmental water utilizing MIL-100 (Fe)-functionalized magnetic adsorbents. New Journal of Chemistry 2020, 44(4), 1548-1555.
Zhao, T.; Jeremias, F.; Boldog, I.; Nguyen, B.; Henninger, S. K.; Janiak, C., High-yield, fluoride-free and large-scale synthesis of MIL-101 (Cr). Dalton Transactions 2015, 44(38), 16791-16801.
Zhong, G.; Liu, D.; Zhang, J., Applications of porous metal–organic framework MIL-100 (M)(M= Cr, Fe, Sc, Al, V). Crystal Growth & Design 2018, 18(12), 7730-7744.