跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡貴雄
Kuai-Hong Vu
論文名稱: Teleparallel重力理論中的準局域能量、動量和角動量
Quasilocal Energy-Momentum and Angular Momentum for Teleparallel Gravity
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 88
語文別: 中文
論文頁數: 58
中文關鍵詞: Teleparallel準局域能量與角動量
外文關鍵詞: Teleparallel, Quasilocal, Energy and angular momentum
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報



  • cosmological constant and found them to give the correct total value for energy and angular momentum asymptotically. Our result shows that contrary to Moller''s expectation the
    teleparallel formulation is no better than the Riemannian description in providing for a good localization of energy-momentum and angular momentum.

    1.Introduction 1.1 Gravitational energy-momentum and its localization 1.2 Teleparallel theory 1.3 Outline of this thesis 2. Teleparallel Lagrangian and Hamiltonian formulation 2.1 Introduction 2.2 Usual Lagrangian and Hamiltonian formulation 2.3 Formulation with Lagrange multiplier method 2.3.1 General formulation for geometric dynamic theories 2.3.2 Formulation for standard Einstein-Hilbert Lagrangian 3. Non-uniqueness 3.1 One solution for the Lagrange multiplier 3.2 Non-unique Lagrange multiplier 4. Evaluation of energy and angular momentum for Kerr solution 4.1 Calculation with five types of coframes 4.2 Discussion fo this result 4.3 Comparison with other''s expression 5. Conclusion A Calculation of energy and angular momentum for Kerr solution in detail

    1. Misner C W, Thorne K S and Wheeler J A 1973 Gravitation
    2. Chen C M 1994 Quasilocal quantities for gravity theories MSc Thesis National Central University, Chungli unpublished
    3. Chiang-Mei Chen and James M Nester 1999 Class. Quantum Grav. 16 1279-1304
    4. Nester J M 1991 Mod. Phys. Lett. A 6 2655-61
    5. Nester J M 1984 The gravitational Hamiltonian Asymptotic Behavior of Mass and Space-Time Geometry (Lecture Notes in Physics vol 202) ed F Flaherty (Berlin: Springer) pp 155-63
    6. Regge T and Teitelboim C 1974 Ann. Phys. 88 286-319
    7. Kijowski J and Tulczyjew W M 1979 A Symplectic Framework for Field Theories (Lecture Notes in Physics vol 107) (Berlin: Springer)
    8. Y-S. Duan, J-C. Liu and X-G. Dong, “General Covariant Energy-Momentum Conservation Law in General Spacetime”, Gen. Rel. Grav. 20 (1988) 485-496
    9. Y-S. Duan and S-S. Feng, “General Covariant Conservation Law of Angular Momentum in General Relativity”, Comm. Theor. Phys. 25 (1996) 99-104.
    10. C. Mo ller, symbol92 On the Localization of the energy of a Physical System in the General Theory of Relativity", Ann. Phys. 4 (1958) 347-371.
    11. R. Weitzenbock, Invariantentheorie (Noordhoff, Gronningen, 1923).
    12. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 217 (1928).
    13. K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979).
    14. J. A. Schouten, Ricci Calculus, 2nd ed. (Springer-Verlag, London, 1954).
    15. J. M. Nester and H. J. Yo “Symmetric teleparallel general relativity”, Chin. J. Phys. 37 113-117 (1999).
    16. J. M. Nester “Positive energy via the teleparallel Hamiltonian” Int. J. Mod. Phys. A 4 (1989) 1755-1772.
    17. J. David Brown and J. W. York, Jr., Phys. Rev. D 47 ,1407 (1993).
    18. Arnowitt R, Deser S and Misner C W 1962 The dynamics of general relativity Gravitation: an Introduction to Current Research ed. L Witten (New York: Wiley) pp 227-65.
    19. V. C. de Andrade, L. C. T. Guillen and J. G. Pereia “Gravitational Energy-Momentum Density in Teleparallel Gravity” Phys. Rev. Lett. 84 (2000) 4533-4536
    20. C. Mo ller, “Conservation Laws and Absolute Parallelism in General Relativity”, Mat. Fys. Dan. Vid. Selsk. 1 (1961) 1-50.

    QR CODE
    :::