跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁子皓
Zih-Hau Wong
論文名稱: 以數位波束成型方法用於移動目標物之盲目入射角度追蹤與多路徑通道等化
Digital Beamforming Method for Moving Targets with Blind DOA Tracking and Multipath Channel Equalization
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 波束成型技術盲目演算法多重路徑通道入射角度追蹤延展型卡爾曼濾波器
外文關鍵詞: Beamforming, Blind equalization, Multipath Channel, DOA, Extended Kalman filter
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科學家們利用智慧型天線 (Smart Antenna) 來接收特定入射角度的傳輸訊號,然而訊號在地面上或是室內等地方進行傳輸時候會因為通道的影響造成失真,並且接收到的訊號是包含了欲求訊號、干擾訊號和雜訊。廣義旁帶消除器(Generalized Sidelobe Canceller, GSC)用來抑制干擾訊號和雜訊,並且得到欲求訊號。在本篇論文中使用了 GSC 和決策回授系統 (Decision Feedback, DF)來處理多路徑 (Multipath) 通道問題,並且同時增進 GSC 的效能。本篇論文以盲目等化演算法 (Blind equalization) 來取代舊有的訓練符元 (training sequence) 以及決策方法 (decision-directed method) 來做 DF 系統的設計。除此之外,訊號入射至天線伴隨著角度誤差(Directed-of-arrival mismatch, DOA mismatch) 的問題,若入射的角
    度誤差無法做修正的話會對 GSC 系統效能造成影響。因此本篇論文是假設在目標物為移動訊號源的情況下所產生的角度誤差,利用延展型卡爾曼濾波器(Extended Kalman Filtering, EKF) 來對角度進行追蹤以改善此項問題。


    The smart antenna technology is used for receiving the signals with a specific impinging angle. However, the receive signal is usually distorted by the channel and is composed of the desired signal, interference signals, and noises. The generalized sidelobe canceller (GSC)method can be used to eliminate the interference and noise in order to
    obtain the desired signal. In this thesis, the GSC , blind equalization, and decision directed method are considered to deal with the multipath channel with improved GSC performance. Instead of using the training sequence for adaptive GSC, the decision directed signal along with blind
    equalization is used for the GSC. The mismatched DOA can do damage to the GSC performance. In the proposed GSC, the direction-of-arrival(DOA) is under tracking and correction with the extended Kalman filter for mobile target sources to solve the mismatched DOA problem.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 第 1 章序論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 章節架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第 2 章GSC 波束形成器架構和角度誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 訊號模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 廣義旁帶消除器 (GSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 最佳的可適性權重 w a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 最小均方演算法 (LMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 卡爾曼濾波器 (KF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 欲求訊號入射角度誤差的影響 (DOA mismatch analysis) . . . . . 17 第 3 章以延展型卡爾曼濾波器的 GSC 架構加入盲目演算法 . . . . . . . . . . . . . . . 20 3.1 決策回授系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 使用訓練符元的決策回授系統 . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 使用盲目演算法的決策回授系統 . . . . . . . . . . . . . . . . . . . . . 24 3.2 GSC 加入決策回授系統後的架構分析 . . . . . . . . . . . . . . . . . . . . 29 3.2.1 加入 DF 的最佳的可適性權重 w a . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 加入 DF 系統的 LMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 加入 DF 系統的 KF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 DF-GSC 系統使用延展型卡爾曼濾波器來追蹤角度 . . . . . . . . . 34 3.3.1 延展型卡爾曼濾波器的系統架構 . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Blind-DF-GSCEKF 系統的運作方式 . . . . . . . . . . . . . . . . . . 39 第 4 章SINR 和 Cramer-Rao Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1 SINR 值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Cramer-Rao Lower Bound (CRLB) . . . . . . . . . . . . . . . . . . . . . . . . 43 第 5 章系統模擬與結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 固定訊號源下的模擬比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Case I. 較理想的通道環境 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.2 Case II. 較差的通道環境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 移動訊號源下的模擬比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2.1 Case I. 線性移動的訊號源模型 . . . . . . . . . . . . . . . . . . . . . . . 64 5.2.2 Case II. 非線性移動的訊號源模型 . . . . . . . . . . . . . . . . . . . . 80 第 6 章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    [1] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays.
    New York:Wiley, 2011.
    [2] O. L. I. Frost., “An algorithm for linearly constrained adaptive array
    processing,” Proceedings of the IEEE, vol. 60, no. 8, pp. 926 – 935,
    Aug. 1972.
    [3] K. Takao and C. Boon, “Importance of the exclusion of the desired
    signal from the control of a generalised sidelobe canceller,” IEEE
    Proceedings F. Radar and Signal Processing,, vol. 139, no. 4, pp.
    265 – 272, Aug. 1992.
    [4] B. D. V. Veen and K. Buckley, “Beamforming: a versatile approach
    to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4 – 24,
    April 1988.
    [5] D. D. Feldman and L. J. Griffiths, “A projection approach for robust
    adaptive beamforming,” IEEE Transactions on Signal Processing,
    vol. 42, no. 4, pp. 867 – 876, Apr 1994.
    [6] Y. Lee and W. R. Wu, “Robustness analysis of a decision feedback
    generalized sidelobe canceller,” IEEE International Symposium on,
    vol. 4, pp. 3179 – 3182, May 2005.
    [7] Y. Lee and W. Wu, “A robust adaptive generalized sidelobe can-
    celler with decision feedback,” IEEE Transactions on Antennas and
    Propagation,, vol. 53, no. 11, pp. 3822 – 3832, Nov 2005.
    [8] F. A. L. Gomes, A. D. D. Neto, and A. D. D. Araujo, “Kalman fil-
    ter applied to gsc in adaptive antennas array,” Radio and Wireless
    Conference, 2000. RAWCON 2000. 2000 IEEE, pp. 125 – 130, Sep
    2000.
    [9] Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estima-
    tion for ofdm systems with rapid dispersive fading channels,” IEEE
    Transactions on Communications, vol. 46, no. 7, pp. 902 – 915, Jul
    1998.
    [10] A. Benveniste and M. Goursat, “Blind equalizers,” IEEE Transac-
    tions on Communications, vol. 32, no. 8, pp. 871 – 883, Aug 1984.
    [11] K. Oh and Y. O. Chin, “Modified constant modulus algorithm: blind
    equalization and carrier phase recovery algorithm,” 1995 IEEE In-
    ternational Conference, vol. 1, pp. 498–502, Jun 1995.
    [12] N. Jablon, “Joint blind equalization, carrier recovery, and timing
    recovery for 64-qam and 128-qam signal constellations,” IEEE In-
    ternational Conference on ’World Prosperity Through Communica-
    tions’, vol. 2, pp. 1043 – 1049, Jun 1989.
    [13] D. Hatzinakos, “Carrier phase recovery issues in polyspectra-based
    equalizers,” 1991 International Conference on, vol. 3, pp. 1537 –
    1540, Apr 1991.
    [14] Y. Sato, “A method of self-recovering equalization for multilevel
    amplitude-modulation systems,” IEEE Transactions on Communi-
    cations, vol. 23, no. 6, pp. 679 – 682, Jun 1975.
    [15] G. Picchi and G. Prati, “Blind equalization and carrier recovery us-
    ing a ”stop-and-go” decision-directed algorithm,” IEEE Transac-
    tions on Communications, vol. 35, no. 9, pp. 877 – 887, Sep 1989.
    [16] C. K. Sword, M. Simaan, and E. W. Kamen, “Multiple target an-
    gle tracking using sensor array outputs,” IEEE Transactions on
    .Aerospace and Electronic Systems,, vol. 26, no. 2, pp. 367 – 373,
    Mar 1990.
    [17] S. B. Park, C. S. Ryu, and K. K. Lee., “Multiple target angle tracking
    algorithm using predicted angles,” IEEE Transactions. Aerospace
    and Electronic Systems, vol. 30, no. 2, pp. 643 – 648, Apr 1994.
    [18] R. J. Weber and Y. Huang, “Analysis for capon and music doa es-
    timation algorithms,” Antennas and Propagation Society Interna-
    tional Symposium, 2009, pp. 1 – 4, Jun 2009.
    [19] S. Affes, “An algorithm for multisource beamforming and multitar-
    get tracking,” IEEE Signal Processing Society, vol. 44, no. 6, pp.
    1512 – 1522, Jun 1996.
    [20] D. Kong and J. Chun, “A fast doa tracking algorithm based on the
    extended kalman filter,” National Aerospace and Electronics Con-
    ference, 2000. NAECON 2000., pp. 235 – 238, Oct 2000.
    [21] S. Haykin, Adaptive Filter Theory, Fourth Edition. S.Haykin,
    2001.
    [22] S. Abrar and A. K. Nandi, “Blind equalization of square-qam sig-
    nals: a multimodulus approach,” IEEE Communications Society,
    vol. 58, no. 6, pp. 1674 – 1685, June 2010.
    [23] C. Tseng and C. Lin, “A stop-and-go dual-mode algorithm for
    blind equalization,” Global Telecommunications Conference, 1996.
    GLOBECOM ’96. ’Communications: The Key to Global Prosper-
    ity, vol. 2, pp. 1427 – 1431 vol.2, Nov 1996.
    [24] H.-S. Hung and Y.-M. Wei, “Blind adaptive beamforming based on
    inverse qrd-rls,” 2004 International Symposium, pp. 121–124, April
    2004.
    [25] C. R. Rao, C. R. Sastry, and B. Zhou, “Tracking the direction of ar-
    rival of multiple moving targets,” IEEE Signal Processing Society,
    vol. 42, no. 5, pp. 1133 – 1144, May 1994.
    [26] P. Tichavsky, C.H.Muravchik, and A. Nehorai, “Posterior cramer-
    rao bounds for discrete-time nonlinear filtering,” IEEE Transactions
    on Signal Processing, vol. 46, no. 5, pp. 1386 –1396, May 1998.

    QR CODE
    :::