跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林易儒
Yi-Ru LIN
論文名稱: 銠和鎳的添加對於鉑奈米團簇之 乙醇氧化及 析 氫反應 效能之影響
The Effect of Rh and Ni Modification on the Ethanol Oxidation and Hydrogen Evolution Reaction Performance of Pt Nanoclusters
指導教授: 王冠文
Kuan-Wan Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 奈米團簇沉澱沉積乙醇氧化反應析氫反應鉑銠觸媒鉑銠鎳觸媒
外文關鍵詞: nanoclusters (NCs), deposition-precipitation method (DP), ethanol oxidation reaction (EOR), hydrogen evolution reaction (HER)n, PtRh, PtRhNi
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迄今為止,Pt和Pt基合金催化劑由於其優異的效能和穩定性,已被廣泛應用於全pH值的電化學反應。但是,對於乙醇氧化反應(ethanol oxidation reaction, EOR)而言,由於Pt較難打斷C-C鍵,因此無法實現完全的12個電子轉移。此外,儘管事實證明Pt具有很高的析氫反應(hydrogen evolution reaction, HER)效能,但其昂貴和稀缺性使Pt無法大規模被使用。因此為了在成本和效能之間取得平衡,設計低Pt含量且高效EOR和HER的觸媒為燃料電池發展的重要議題。
    本研究透過簡便的沉澱沉積法製備超低Pt負載量的Pt、Rh、PtRh2 和PtRh2Ni0.3奈米團簇(nanocluster, NCs)。經由高解析穿透式電子顯微鏡(high-resolution transmission electron microscopy, HRTEM)證實NCs的平均粒徑約為1.5±0.5奈米。並藉由X光吸收光譜(X-ray absorption spectroscopy, XAS)結果表明添加銠/鎳(Rh/Ni)會改變Pt的電子結構並提高催化活性。
    對於EOR效能,相較於Pt和PtRh2-NCs,PtRh2Ni0.3-NCs顯示出在全pH值的環境下之最佳催化效能。值得注意的是,在所有催化劑中,PtRh2Ni0.3-NCs在電位為0.6V時擁有最高的電流密度(I0.6),其在0.5 M 硫酸和1.0 M氫氧化鉀電解液中,分別為181.5和3295.7 A/g,約為Pt-NCs的2.8和6.1倍(64.3和536.0 A/g)。經穩定度測試後,在0.5 M 硫酸和1.0 M氫氧化鉀電解液中,相較於Pt-NCs(3.5和11.5 A/g),PtRh2Ni0.3-NCs的I0.6仍然高達33.3和227.4 A/g。
    另一方面,對於HER效能,在酸性和鹼性電解液中,PtRh2Ni0.3-NC具有最小的過電位(28和29 mV)、出色的塔佛斜率(30和73 mV dec-1)和最高的質量活性(mass activity, MA)(4489和1663 A/gPt or Rh)。經長時間的CA測試後,在所有催化劑中,PtRh2Ni0.3-NCs在酸性和鹼性電解液中仍具有最高的MA值分別為3513和1366 A/gPt or Rh。本研究揭示了Rh/Ni的添加會改變Pt的電子結構,並提高EOR和HER的效能和穩定度。更重要的是,這項研究提供了一種有潛力的方法,可通過精確控制Pt的添加量和透過添加Rh/Ni來提高Pt-NCs的效能,並增加Pt的利用率和改善在全pH值條件下EOR和HER的性能。

    關鍵詞: 奈米團簇、沉澱沉積、乙醇氧化反應、析氫反應、鉑銠觸媒、鉑銠鎳觸媒


    Up to date, Pt and Pt-based alloy catalysts have been widely used for all electrochemical reactions, owing to its outstanding activity and excellent stability under all pH-universal condition. However, for the application as ethanol oxidation reaction (EOR) catalysts, the total 12 electron transfer is not attainable on Pt due to the difficulty of the C-C bond cleavage. Moreover, despite the fact that Pt shows high hydrogen evolution reaction (HER) performance, the high cost and scare supply make it far away from the large-scale application. In order to have a balance between cost and performance, the design of low Pt content and highly efficient electrocatalyst EOR and HER is important tasks for the development of fuel cells.
    In this study, Pt, Rh, PtRh2 and PtRh2Ni0.3 nanocluster (NCs) with ultra-low Pt loading were prepared by a facile deposition-precipitation method. High-resolution transmission electron microscopy (HRTEM) confirms that NCs with an average particle size of about 1.5±0.5nm. The X-ray absorption spectroscopy (XAS) result demonstrates that the addition of Rh/Ni will change the electronic structure of Pt and improve catalytic activity.
    For the EOR performance, PtRh2Ni0.3-NCs show clearly superior catalytic performance under the pH-universal environment to Pt and PtRh2 NCs. It is worth noting that among all catalyst, PtRh2Ni0.3-NCs display the highest I0.6 of 181.5 and 3295.7 A/g, which is ~2.8 and 6.1 folds higher than that of Pt- NCs (64.3 and 536.0 A/g) in the 0.5 M H2SO4 and 1.0 M KOH electrolyte, respectively. After the durability test, I0.6 of PtRh2Ni0.3-NCs in 0.5 M H2SO4 and 1.0 M KOH is still as high as 33.3 and 227.4 A/g, which is higher than that of Pt-NCs (3.5 and 11.5 A/g).
    On the other side, for the HER performance, PtRh2Ni0.3-NCs have the smallest overpotential at 10 mA cm-2 (28 and 29 mV), outstanding Tafel slope (30 and 73 mV dec-1) and the highest mass activity (MA) (4489 and 1663 A/gPt or Rh) in acidic and alkaline electrolyte, respectively. After long-term CA test, among all catalysts, PtRh2Ni0.3-NCs still has the highest MA of 3513 and 1366 A/gPt or Rh in acidic and alkaline electrolyte. This study reveals that the addition of Rh/ Ni will change the electronic structure of Pt and enhance the EOR and HER performance and stability, which is proved by XAS. More importantly, this study provides a promising method to enhance the Pt utilization and improve EOR and HER performance under the pH-universal conditions for Pt-NCs by precisely controlling the Pt loading and adding Rh and Ni.

    Keywords: nanoclusters (NCs), deposition-precipitation method (DP), ethanol oxidation reaction (EOR), hydrogen evolution reaction (HER), PtRh, PtRhNi

    Table of Contents 摘要 ......................................................................................................... i Abstract ................................................................................................ iii 致謝 ......................................................................................................... v Table of Contents ................................................................................ vii List of Figures ...................................................................................... ix List of Table ......................................................................................... xi Chpater 1 Introduction ....................................................................... 1 1.1 The Mechanism of EOR ............................................................... 2 1.2 The Mechanism of HER ............................................................... 4 1.3 Low Pt Loading Catalysts for EOR and HER .............................. 7 1.4 Motivation and Approach ............................................................. 8 Chpater 2 Experimental Section........................................................ 9 2.1 Preparation of Catalysts ................................................................ 9 2.1.1 Preparation of carbon-supported Pt, Rh, and PtRh2-NCs ..... 9 2.1.2 Preparation of carbon-supported PtRh2Ni0.3-NCs ................. 9 2.2 Characterization of Catalysts ...................................................... 13 2.2.1 Field-Emission scanning electron microscope and X-ray Energy Dispersive Spectrometer (SEM-EDX) .................... 13 2.2.2 X-ray diffraction (XRD) ...................................................... 13 2.2.3 High-resolution transmission electron microscopy (HRTEM) .............................................................................. 13 2.2.4 X-ray photoelectron spectroscopy (XPS) ............................ 15 2.2.5 X-ray absorption spectroscopy (XAS) ................................ 15 2.3 Electrochemical Measurements of Catalysts .............................. 18 2.3.1 CO-stripping ........................................................................ 18 2.3.2 EOR performance ................................................................ 18 viii 2.3.3 HER performance ................................................................ 19 Chpater 3 Results and Discussion ................................................... 21 3.1 The Structural Characterizations of Catalysts ............................ 21 3.1.1 XRD and HRTEM characterizations ................................... 21 3.1.2 SEM-EDX and XPS characterizations ................................ 21 3.1.3 XAS characterizations ......................................................... 26 3.2 The EOR Performance of the Catalysts ...................................... 30 3.2.1 CO- stripping ....................................................................... 30 3.2.2 EOR performance in acidic electrolytes .............................. 30 3.2.3 EOR performance in alkaline electrolytes .......................... 35 3.2.4 Summary .............................................................................. 38 3.3 The HER Performance of the Catalysts. ..................................... 41 3.3.1 HER performance in acidic electrolyte ............................... 41 3.3.2 HER performance in alkaline electrolyte ............................ 45 3.3.3 Summary .............................................................................. 49 Chpater 4 Conclusions ...................................................................... 51 References ............................................................................................ 53

    References
    1. J. Chang, L. Feng, C. Liu, W. Xing, X. Hu, An Effective Pd-Ni2P/C
    Anode Catalyst for Direct Formic Acid Fuel Cell, Angew. Chem.,
    Int. Ed. 53 (2014) 122-126.
    2. H. Begum, M. S. Ahmed, S. Jeon, Highly efficient dual active
    palladium nanonetwork electrocatalyst for ethanol oxidation and
    hydrogen evolution. ACS Appl. Mater. Interfaces 9 (2017) 39303-
    39311.
    3. M. Z. F. Kamarudin, S. K. Kamarudium, M. S.Masdar, W. R. W.
    Daud, Review: Direct Ethanol Fuel Cells, Int. J. Hydrogen Energy
    38 (2013) 9438-9453.
    4. S. P. S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Direct
    Ethanol Fuel Cells for Transport and Stationary Applications A
    comprehensive review, Appl. Energy 145 (2015) 80-103.
    5. L. An, T. S. Zhao, Transport Phenomena in Alkaline Direct Ethanol
    Fuel Cells for Sustainable Energy Production, J. Power Sources 341
    (2017) 199-211.
    6. Y. Jin, F. Chen, J. Wang, L. Guo, T. Jin, H. Liu, Lamellar platinum–
    rhodium aerogels with superior electrocatalytic performance for
    both hydrogen oxidation and evolution reaction in alkaline
    environment, J. Power Sources 435 (2019) 226798.
    7. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-Noble Metal-based
    Carbon Composites in Hydrogen Evolution Reaction: Fundamentals
    to Applications, Adv. Mater. 29 (2017) 1605838.
    8. J. Mahmood, F. Li, S. M. Jung, M.S. Okyay, I. Ahmad, S. J. Kim, N.
    Park, H. Y. Jeong, J.B. Baek, An efficient and pH-universal
    54
    ruthenium-based catalyst for the hydrogen evolution reaction, Nat.
    Nanotechnol. 12 (2017) 441.
    9. Y.-J. Ko, J.-M. Cho, I. Kim, D.S. Jeong, K.-S. Lee, J.-K. Park, Y.-J.
    Baik, H.-J. Choi, W.-S. Lee, Tungsten Carbide Nanowalls as
    Electrocatalyst for Hydrogen Evolution Reaction: New Approach to
    Durability Issue, Appl. Catal. B Environ. 203 (2017) 684–691.
    10. Z. Han, R. L. Zhang, J. J. Duan, A.J. Wang, Q. L. Zhang, H. Huang,
    J. J. Feng, Platinum-rhodium alloyed dendritic nanoassemblies: An
    all-pH efficient and stable electrocatalyst for hydrogen evolution
    reaction, Int. J. Hydrogen Energy 45 (2020) 6110-6119.
    11. Z. S. Lv, X. Y. Zhu, H. B. Meng, J. J. Feng, A. J. Wang, One-pot
    synthesis of highly branched Pt@Ag core-shell nanoparticles as a
    recyclable catalyst with dramatically boosting the catalytic
    performance for 4-nitrophenol reduction, J. Colloid Interface Sci.
    538 (2019) 349-356.
    12. Z. Wang, X. Ren, Y. Luo, L. Wang, G. Cui, F. Xie, H. Wang, Y. Xie,
    X. Sun, An ultrafine platinum–cobalt alloy decorated cobalt
    nanowire array with superb activity toward alkaline hydrogen
    evolution, Nanoscale 10 (2018) 12302-12307.
    13. M. Smiljani, Z. Rakocevi, S. Strbac, Electrocatalysis of hydrogen
    evolution reaction on tri-metallic Rh@Pd/Pt(poly) electrode, Int. J.
    Hydrogen Energy 43 (2018) 2763-2771.
    14. Y. Zheng, X. Wan, X. Cheng, K. Cheng, Z. Dai, Z. Liu, Advanced
    Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel
    Cells, Catalysts 10 (2020) 166.
    55
    15. Y. Wan, S. Zou, W.-B. Cai, Recent Advances on Electro-Oxidation
    of Ethanol on Pt- and Pd-Based Catalysts: From Reaction
    Mechanisms to Catalytic Materials, Catalysts 5 (2015) 1507-1534.
    16. S. C. S. Lai, S. E. F. Kleijn, F. T. Z. Öztürk, V. C. van R. Vellinga, J.
    Koning, P. Rodriguez, M. T. M. Koper , Effects of electrolyte pH and
    composition on the ethanol electro-oxidation reaction, Catalyst
    Today 154 (2010) 92-104.
    17. E. Antolini, Review Catalysts for direct ethanol fuel cells, J. Power
    Sources 170 (2007) 1-12.
    18. M.A.F. Akhairi, S.K. Kamarudin, Review Article Catalysts in direct
    ethanol fuel cell (DEFC): An overview, Int. J. Hydrogen Energy 41
    (2016) 4214-4228.
    19. H. Begum, M. S. Ahmed, S. Jeon, Highly Efficient Dual Active
    Palladium Nanonetwork Electrocatalyst for Ethanol Oxidation and
    Hydrogen Evolution, ACS Appl. Mater. Interfaces 9 (2017) 39303-
    39311.
    20. L. Rößner, M. Armbrüster, Electrochemical energy conversion on
    intermetallic compounds: a review, ACS Catal. 9 (2019) 2018-2062.
    21. J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C.Wei, Z. J. Xu,
    Heterostructured Electrocatalysts for Hydrogen Evolution Reaction
    Under Alkaline Conditions, Nano-Micro Lett. 10 (2018) 1-15
    22. N. Dubouis, A. Grimaud, The hydrogen evolution reaction: from
    material to interfacial descriptors, Chem. Sci. 10 (2019) 9165-9181.
    23. P. Wang, K. Jiang, G. Wang, J. Yao, X. Huang, Phase and Interface
    Engineering of Platinum–Nickel Nanowires for Efficient
    56
    Electrochemical Hydrogen Evolution, Angew. Chem. Int. E. 128
    (2016) 1-6.
    24. J. K. Norskov, C.H. Christensen, Toward Efficient Hydrogen
    Production at Surfaces, Science 312 (2006) 1322.
    25. J. Zheng, W. Sheng, Z. Zhuang, B. Xu, Y. Yan, Universal
    dependence of hydrogen oxidation and evolution reaction activity of
    platinum-group metals on pH and hydrogen binding energy, Sci. Adv.
    2 (2016) e1501602.
    26. F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Interfacing nickel
    nitride and nickel boosts both electrocatalytic hydrogen evolution
    and oxidation reactions, Nat. Commun. 9 (2018) 1-10.
    27. Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang,
    Surface-Engineered PtNi‑O Nanostructure with Record-High
    Performance for Electrocatalytic Hydrogen Evolution Reaction, J.
    Am. Chem. Soc. 140 (2018) 9046-9050.
    28. Y. Cong, B. Yi, Y. Song, Hydrogen Oxidation Reaction in Alkaline
    Media: From Mechanism to Recent Electrocatalysts, Nano Energy
    44 (2018) 288-303.
    29. S. Lu, L. Zhuang, Investigating the Influences of the Adsorbed
    Species on Catalytic Activity for Hydrogen Oxidation Reaction in
    Alkaline Electrolyte, J. Am. Chem. Soc. 139 (2017) 5156-5163.
    30. H. Wang, H. D. Abruña, IrPdRu/C as H2 Oxidation Catalysts for
    Alkaline Fuel Cells, J. Am. Chem. Soc. 139 (2017) 6807-6810.
    31. W. Sheng, H. A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and
    evolution reaction kinetics on platinum: acid vs alkaline electrolytes.
    57
    J. Electrochem. Soc. 157(2010), B1529-B1536.
    32. Z. Li, R. Ge, J. Su, L. Chen, Recent Progress in Low Pt Content
    Electrocatalysts for Hydrogen Evolution Reaction, Adv. Mater.
    Interfaces 7 (2020) 2000396.
    33. J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Ruthenium-cobalt
    nanoalloys encapsulated in nitrogen-doped graphene as active
    electrocatalysts for producing hydrogen in alkaline media, Nature
    Commun. 8 (2017) 1-12
    34. C. Zhu, Q. Shi, S. Feng, D. Du, Y. Lin, Single-Atom Catalysts for
    Electrochemical Water Splitting, ACS Energy Lett. 3 (2018) 1713-
    1721.
    35. J. Liu, Q. Ma, Z. Huang, G. Liu, H. Zhang, Recent Progress in
    Graphene-Based Noble-Metal Nanocomposites for Electrocatalytic
    Applications, Adv. Mater. 31 (2019) 1800696.
    36. G. Zhao, K. Rui, S. X. Dou, W. Sun, Heterostructures for
    Electrochemical Hydrogen Evolution Reaction: A Review, Adv.
    Funct. Mater. 28 (2018) 1803291.
    37. Y. Shi, B. Zhang, Recent advances in transition metal phosphide
    nanomaterials: synthesis and applications in hydrogen evolution
    reaction, Chem. Soc. Rev. 45(2016) 1529-1541.
    38. Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chrokendorff, J. K.
    Nørskov, T. F. Jaramillo, Combining theory and experiment in
    electrocatalysis: Insights into materials design, Science 355 (2017)
    6321.
    39. Y. Yuan, H. Li, L. Wang, L. Zhang, D. Shi, Y. Hong, J. Sun,
    58
    Achieving Highly Efficient Catalysts for Hydrogen Evolution
    Reaction by Electronic State Modification of Platinum on Versatile
    Ti3C2Tx (MXene), ACS Sustainable Chem. Eng, 7 (2019) 4266-4273.
    40. X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Ultrafine
    Pt nanoparticle‐decorated pyrite‐type CoS2 nanosheet arrays coated
    on carbon cloth as a bifunctional electrode for overall water splitting,
    Adv. Energy Mater. 8 (2018) 1800935.
    41. Z. Gao, M. Li, J. Wang, J. Zhu, X. Zhao, H. Huang, J. Zhang, Y. Wu,
    Y. Fu, X. Wang, Pt nanocrystals grown on three-dimensional
    architectures made from graphene and MoS2 nanosheets: highly
    efficient multifunctional electrocatalysts toward hydrogen evolution
    and methanol oxidation reactions, Carbon 139 (2018) 369-377.
    42. Y. H. Li, J. Xing, X. H. Yang, H. G. Yang, Cluster size effects of
    platinum oxide as active sites in hydrogen evolution reactions, Chem.
    Eur. J. 20 (2014) 12377-12380.
    43. M. K. Kundua, T. Bhowmika, R. Mishraa, S. Barmana, Pt
    Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for
    Hydrogen Evolution/Oxidation Reactions: Enhancing its Base
    Media Activity through Bi-functionality of the Catalyst,
    ChemSusChem 11 (2018) 2388-2401.
    44. H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y.
    Gao, Z. Tang, Ultrathin platinum nanowires grown on single-layered
    nickel hydroxide with high hydrogen evolution activity. Nat.
    Commun. 6 (2015) 1-8.
    45. T. Yang, M. Du, H. Zhu, M. Zhang, M. Zou,. Immobilization of Pt
    59
    nanoparticles in carbon nanofibers: bifunctional catalyst for
    hydrogen evolution and electrochemical sensor. Electrochim. Acta
    167 (2015) 48-54.
    46. J. Ying, G. Jiang, Z. P. Cano, L. Han, X. Y. Yang, Z. Chen, Nitrogendoped
    hollow porous carbon polyhedrons embedded with highly
    dispersed Pt nanoparticles as a highly efficient and stable hydrogen
    evolution electrocatalyst, Nano Energy 40 (2017) 88-94.
    47. K. Li, Y. Li, Y. Wang, J. Ge, C. Liu, W. Xing, Enhanced
    electrocatalytic performance for the hydrogen evolution reaction
    through surface enrichment of platinum nanoclusters alloying with
    ruthenium in situ embedded in carbon, Energy Environ. Sci. 11
    (2018) 1232-1239.
    48. D. Soundararajan, J. H. Park, K. H. Kim, J. M. Ko, Pt–Ni alloy
    nanoparticles supported on CNF as catalyst for direct ethanol fuel
    cells, Curr. Appl. Phys. 12 (2012) 854-859.
    49. L. Y. Jiang, X. Y. Huang, A. J. Wang, X. S. Li, J. Yuan, J. J. Feng,
    Facile solvothermal synthesis of Pt76Co24 nanomyriapods for
    efficient electrocatalysis, J. Mate. Chem. A 5 (2017) 10554-10560.
    50. J. Bai, X. Xiao, Y. Y. Xue, J. X. Jiang, J. H. Zeng, X. F. Li, Y. Chen,
    Bimetallic platinum–rhodium alloy nanodendrites as highly active
    electrocatalyst for the ethanol oxidation reaction, ACS Appl. Mater.
    Interfaces 10 (2018) 19755-19763.
    51. L. D. Germano, V. S. Marangoni, N. V. Mogili, L. Seixas, C. M.
    Maroneze, Ultrasmall (< 2 nm) Au@ Pt nanostructures: tuning the
    surface electronic states for electrocatalysis, ACS Appl. Mater.
    60
    Interfaces 11 (2019) 5661-5667.
    52. N. Erini, R. Loukrakpam, V. Petkov, E. A. Baranova, R. Yang, D.
    Teschner, Y. Huang, S. R. Brankovic, P. Strasser, Ethanol electrooxidation
    on ternary platinum–rhodium–tin nanocatalysts: Insights
    in the atomic 3D structure of the active catalytic phase. Catal. 4
    (2014) 1859-1867.
    53. N. Erini, P. Krause, M. Gliech, R. Yang, Y. Huang, P. Strasser,
    Comparative assessment of synthetic strategies toward active
    platinum–rhodium–tin electrocatalysts for efficient ethanol electrooxidation.
    J. Power Sources 294 (2015) 299-304.
    54. M. Sarno, E. Ponticorvo, D. Scarpa, PtRh and PtRh/MoS2 nanoelectrocatalysts
    for methanol oxidation and hydrogen evolution
    reactions, Chem. Eng. J. 377 (2019) 120600.
    55. P. Quaino, F. Juarez, E. Santos, W. Schmickler, Volcano plots in
    hydrogen electrocatalysis–uses and abuses. Beilstein J. nanotechnol.
    5 (2014) 846-854.
    56. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder,
    D. Li, J. A. Herron, M. Marikakis, M. Chi, K. L. More, Y. Li, N. M.
    Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Highly
    Crystalline Multimetallic Nanoframes with Three-Dimensional
    Electrocatalytic Surfaces, Science 343 (2014) 1339-1343.
    57. K. Ding, Y. Zhao, L. Liu, Y. Cao, Q. Wang, H. Gu, X. Yan, Z. Guo,
    Pt-Ni bimetallic composite nanocatalysts prepared by using multiwalled
    carbon nanotubes as reductants for ethanol oxidation reaction,
    Int. J. Hydrogen Energy 39 (2014) e17633.
    61
    58. S. Wang, G. Yang, S. Yang, Pt-Frame@Ni quasi core–shell concave
    octahedral PtNi3 bimetallic nanocrystals for electrocatalytic
    methanol oxidation and hydrogen evolution, J. Phys. Chem. C 119
    (2015) 27938-27945.
    59. C. V. S. Almeida, N. A. Galiote, K. I. B. Eguiluz, G. R. Salazar-
    Banda, V. D. Colle, G. Tremiliosi-Filho, Evidence of surface
    restructuration on Pt–Rh/C and Pt–Rh–Ni/C nanoparticles applied to
    ethanol electrooxidation reaction, Electrochim. Acta 351 (2020)
    136223.
    60. N. Erini, S. Rudi, V. Beermann, P. Krause, R. Yang, Y. Huang, P.
    Strasser, Exceptional activity of a Pt-Rh-Ni ternary nanostructured
    catalyst for the electrochemical oxidation of ethanol,
    ChemElectroChem 2 (2015) 903-908.
    61. P. Wang, H. Cui, C. Wang, In situ formation of porous trimetallic
    PtRhFe nanospheres decorated on ultrathin MXene nanosheets as
    highly efficient catalysts for ethanol oxidation, Nano Energy 66
    (2019) 104196.
    62. M. A. Rigsby, W. P. Zhou, A. Lewera, H. T. Duong, P. S. Bagus, W.
    J aegermann, R. Hunger, A. Wieckowski, Experiment and Theory of
    Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on
    Nanoparticle Pt/Ru, J. Phys. Chem. C 112 (2008) 15595-15601.
    63. J. B. Goodenough, R. Manoharan, A. K. Shukla, K. V. Ramesh,
    Intraalloy Electron Transfer and Catalyst Performance: A
    Spectroscopic and Electrochemical Study, Chem. Mater. 1 (1989)
    391-398.
    62
    64. M. N. Banis, S. Sun, X. Meng, Y. Zhang, Z. Wang, R. Li, M. Cai, T.
    K. Sham, X. Sun, TiSi2Ox coated N-doped carbon nanotubes as Pt
    catalyst support for the oxygen reduction reaction in PEMFCs, J.
    Phys. Chem. C 117 (2013) 15457-15467.
    65. M. Brown, R. E. Peierls, E. A. Stern, White lines in x-ray absorption,
    Phys. Rev. B 15 (1977) 738.
    66. T. K. Sham, , S. J. Naftel, I. Coulthard, M 3, ‐edge x‐ray absorption
    near‐edge structure spectroscopy: An alternative probe to the L 3,2‐
    edge near‐edge structure for the unoccupied densities of d states of
    5 d metals. J. App. Phys. 79 (1996) 7134-7138.
    67. A. N. Mansour, , J. W. Cook, D. E. Sayers, Quantitative technique
    for the determination of the number of unoccupied d-electron states
    in a platinum catalyst using the L2,3 X-ray absorption edge spectra, J.
    Phys. Chem. 88 (1984) 2330-2334.
    68. P. H. Huang, C. W. Liu, Y. Z. Guo, S. W. Lee, Z. J. Lin, K. W. Wang,
    The Effect of Atomic Arrangements on the Oxygen Reduction
    Reaction Performance of Carbon-supported CoPtAg Catalysts,
    Electrochim. Acta 219 (2016) 531-539.
    69. N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, X.
    Sun, Platinum single-atom and cluster catalysis of the hydrogen
    evolution reaction, Nat. Commun. 7 (2016) 1-9.
    70. B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, T. Zhang,
    Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3
    (2011) 634-641.
    71. P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu, F. Kapteijn, X.
    63
    Tang, Electronic metal–support interactions in single‐atom catalysts,
    Angew. Chem. Int. E. 126 (2014) 3486-3489.
    72. H. Bao, J. Li, L. Jiang, M. Shang, S. Zhang, Z. Jiang, J. Q. Wang,
    Structure of PtnNi Nanoparticles Electrocatalysts Investigated by Xray
    Absorption Spectroscopy, J. Phys. Chem. C 117 (2013) 20584-
    20591.
    73. P. Lu, T. Teranishi, K. Asakura, M. Miyake, N. Toshima, Polymerprotected
    Ni/Pd bimetallic nano-clusters: preparation,
    characterization and catalysis for hydrogenation of nitrobenzene. J.
    Phys. Chem. B 103 (1999) 9673-9682.
    74. H. Chen, G. Wang, T. Gao, Y. Chen, H. Liao, X. Guo, H. Li, R. Liu,
    M. Dou, S. Nan, Q. He, Effect of Atomic Ordering Transformation
    of PtNi Nanoparticles on Alkaline Hydrogen Evolution: Unexpected
    Superior Activity of the Disordered Phase, J. Phys. Chem. C 124
    (2020) 5036-5045.
    75. A. Bach Delpeuch, T. Asset, M. Chatenet, C. Cremers, Influence of
    the Temperature for the Ethanol Oxidation Reaction (EOR) on Pt/C,
    Pt‐Rh/C and Pt‐Rh‐SnO2/C, Fuel Cells 15 (2015) 352-360.
    76. C. W. Liu, Y. W. Chang, Y. C. Wei, K. W. Wang, The effect of oxygen
    containing species on the catalytic activity of ethanol oxidation for
    PtRuSn/C catalysts, Electrochim. Acta 56 (2011) 2574-2581.
    77. M. Zhu, G. Sun, Q. Xin, Effect of alloying degree in PtSn catalyst
    on the catalytic behavior for ethanol electro-oxidation, Electrochim.
    Acta 54 (2009) 1511-1518.
    78. S. Beyhan, J. M. Léger, F. Kadırgan, Understanding the influence of
    64
    Ni, Co, Rh and Pd addition to PtSn/C catalyst for the oxidation of
    ethanol by in situ Fourier transform infrared spectroscopy, Appl.
    Catal. B 144 (2014) 66-74.
    79. J. Bai, X. Xiao, Y. Y. Xue, J. X. Jiang, J. H. Zeng, X. F. Li, Y. Chen
    Bimetallic Platinum−Rhodium Alloy Nanodendrites as Highly
    Active Electrocatalyst for the Ethanol Oxidation Reaction, ACS
    Appl. Mater. Interfaces 10 (2018) 19755-19763.
    80. G. Gruzeł, P. Piekarz, M. Pawlyta, M. Donten, M. P. Wojtan,
    Preparation of Pt-skin PtRhNi nanoframes decorated with small
    SnO2 nanoparticles as an efficient catalyst for ethanol oxidation
    reaction, ACS Appl. Mater. Interfaces 11 (2019) 22352-22363.
    81. Y. Shen, M. Z. Zhang, K. Xiao, J. Xi, Synthesis of Pt, PtRh, and
    PtRhNi alloys supported by pristine graphene nanosheets for ethanol
    electrooxidation. ChemCatChem. 6 (2014) 3254-3261.
    82. T. H. Huang, D. Bhalothia, S. Lin, Y. R. Huang, K. W. Wang, The
    Ethanol Oxidation Reaction Performance of Carbon-Supported
    PtRuRh Nanorods. Appl. Sci. 10 (2020) 3923.
    83. S. H. Han, H. M. Liu, P. Chen, J. X. Jiang, Y. Chen, Porous
    trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation.
    Adv. Energy Mater. 8 (2018) 1801326.
    84. L. Jin, H. Xu, C. Chen, H. Shang, Y. Wang, C. Wang, Y. Du, Porous
    Pt–Rh–Te nanotubes: an alleviated poisoning effect for ethanol
    electrooxidation. Inorg. Chem. Front. 7 (2020) 625-630.
    85. S. Y. Shen, T. S. Zhao, J. B Xu, Carbon supported PtRh catalysts for
    ethanol oxidation in alkaline direct ethanol fuel cell. Int. J. Hydrogen
    65
    Energy 35 (2010) 12911-12917.
    86. R. Devivaraprasad, T. Kar, A. Chakraborty, R. K. Singh, M. Neergat,
    Reconstruction and dissolution of shape-controlled Pt nanoparticles
    in acidic electrolytes. Phys. Chem. Chem. Phys. 18 (2016) 11220-
    11232.
    87.

    QR CODE
    :::