跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宣宏
Syuan-Hong Lin
論文名稱: 應用MnOx-CeO2/TiO2觸媒同時去除煙道氣中NO、汞及戴奧辛之研究
Application of MnOx-CeO2/TiO2 for simultaneously removing NO、Mercury and PCDD/Fs in flue gas
指導教授: 張木彬
Moo-Been Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 戴奧辛NOx選擇性觸媒還原多重污染物控制
外文關鍵詞: NO, Dioxin, Mercury, SCR, multi-pollutant emission control
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過單一空氣污染防制設備達到多重污染物控制,可降低投資及運轉成本並減少占地面積,故近年來日受重視。選擇性觸媒還原(SCR)程序主要應用於NOx之排放減量,文獻指出目前觸媒技術也應用於戴奧辛之去除及元素汞之轉化。本研究利用不同條件製備MnOx-CeO2/TiO2觸媒以同時轉化NO、戴奧辛及汞,期望發展在較低操作溫度(<250oC)下能順利進行SCR反應之觸媒,獲取較佳之觸媒製備條件,並提高SCR技術之商業價值並降低操作成本。研究結果指出在NO去除方面,系統之操作條件為500 ppm NO、等量之NH3及氧含量10%,通過觸媒床總流量為2 lpm,改變觸媒配比、空間流速、操作溫度及鍛燒溫度皆會影響NO之去除效率,以鍛燒溫度400oC製備之Mn0.4-Ce0.13/Ti1-400oC為觸媒,當操作溫度為200oC,空間流速分別為20000 h-1、50000 h-1及80000 h-1時,NO之去除效率分別為100%、97.92%及82.73%。操作溫度由200oC上升至300oC時,開始有NO2之生成,並進一步發現隨NO2生成量增加,NOx之去除效率隨之下降。提高鍛燒溫度會造成觸媒燒結現象(sintering),使得小晶粒聚集成大晶粒,降低觸媒活性。在戴奧辛去除方面,戴奧辛去除效率隨著操作溫度的升高而呈現先下降後上升的趨勢,150oC、200oC及250oC之去除效率分別為98.3%、94.7%及99.4%,且破壞效率於操作溫度200oC顯著提升至91.8%,而吸附效率則明顯下降為2.9%。Mn0.4-Ce0.13/Ti1-400觸媒於200oC下對PCDD之去除效率達95.5%,對PCDF之去除效率為94.8%。在元素汞轉化測試方面,在150oC即有良好之轉化效率,並隨溫度上升(150、200及250oC)而略微增加,分別達87.5%、88.9%及89.1%。本研究成果指出在操作溫度200oC時,觸媒對NO、戴奧辛及元素汞有良好之去除或轉化效率。


    Simultaneous control of multiple pollutants with a single air pollution control process not only reduces the capital and operating costs but also decreases the floor space. This concept has received much attention recently. Selective catalytic reduction (SCR) process is mainly used in reducing NOx emission, literature indicates that the current SCR catalyst technology is also effective in removing dioxins and oxidizing elemental mercury. This study investigates the effectiveness of MnOx-CeO2/TiO2 catalysts prepared with different conditions for converting three pollutants including NO, dioxin and Hg in gas streams. The objective is to develop the innovative SCR catalysts which can be operated at a lower temperature (<250oC) for high removal efficiency. The experimental results indicate that the NO conversion efficiency achieved with Mn0.4-Ce0.13/Ti1-400 catalyst reaches 97.9% when operated at 200oC. The results also show that NO2 was significantly formed as the operating temperature increased from 200oC to 300oC, and the increased NO2 generation will reduce NOx removal efficiency. The PCDD/F removal efficiencies achieved at 150oC, 200oC and 250oC are 98.3%, 94.7% and 99.4%, respectively. The PCDD/F destruction efficiency achieved with Mn0.4-Ce0.13/Ti1-400 catalyst reach 91.8% and the PCDD/F adsorption efficiency decreased to 2.9% as the temperature was controlled at 200oC. Experimental results also indicate that the Hg0 conversion achieved with Mn0.4-Ce0.13/Ti1-400 catalyst at 150oC, 200oC and 250oC reach 87.5%, 88.9% and 89.1%, respectively. The results indicate the Mn0.4-Ce0.13/Ti1-400 catalyst can be operated at 200oC for effective removal or conversion of dioxin, NO and mercury from gas streams simultaneously.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的與範疇 2 第二章 文獻回顧 3 2.1 戴奧辛之基本特性 3 2.1.1 戴奧辛類化合物之結構及物化特性 3 2.1.2 戴奧辛類化合物之毒性當量 6 2.1.3 戴奧辛生成機制 6 2.2 戴奧辛控制技術 10 2.3 氮氧化物介紹 13 2.3.1 NOx基本特性 15 2.3.2 NOx生成機制與排放源 17 2.4 NOx控制技術 19 2.5 傳統NH3-SCR技術與低溫NH3-SCR技術 22 2.6 低溫SCR觸媒研究概況 23 2.7 汞之物化特性介紹 24 2.8 含汞污染物之控制技術 29 2.8.1 傳統含汞污染物防治技術 29 2.8.2 應用SCR設備對元素汞氧化之可行性 31 2.9 觸媒催化之原理與反應機制 31 第三章 研究方法 34 3.1 研究流程設計 34 3.2 採樣程序 35 3.2.1 採樣對象 35 3.2.2 煙道採樣程序 35 3.2.3 樣品取樣程序 35 3.2.4 樣品瓶清洗程序 35 3.3 實驗設備及材料 38 3.3.1 實驗藥品 38 3.3.2 實驗溶劑 39 3.3.3 實驗材料 39 3.3.4 實驗設備 41 3.4 戴奧辛分析方法 41 3.4.1 樣品前處理 41 3.4.2 PCDD/Fs分析儀器條件設定 44 3.5 NOx分析方法 49 3.6 Hg0分析方法 50 3.7 實驗設計方法 50 3.7.1 觸媒製備 50 3.7.2 實驗模組 50 3.8 其他儀器原理 54 3.8.1 掃描式電子顯微鏡 (SEM) 54 3.8.2 能量分散光譜儀 (EDS) 55 3.8.3 X光繞射分析儀 (XRD) 55 3.8.4 BET比表面積分析儀 56 第四章 結果與討論 59 4.1 觸媒之基本物化特性分析 (N2 adsorption-desorption) 59 4.2 NOx去除之探討 61 4.2.1 不同觸媒配比對NO轉化之影響 63 4.2.2 空間流速對NO轉化之影響 64 4.2.3 鍛燒溫度對NO轉化之影響 65 4.2.4 操作溫度對NOx去除之影響 66 4.3 戴奧辛去除之探討 68 4.3.1 操作溫度對戴奧辛去除之影響 69 4.3.2 鍛燒溫度製備之觸媒對戴奧辛去除之影響 70 4.3.3 各戴奧辛物種之去除效率 71 4.4 元素汞轉化之探討 75 第五章 結論與建議 77 5.1 結論 77 5.2 建議 77 參考文獻 79

    Altwicker, E. R., “Formation of Precursors to Chlorinated Dioxin/furans under
    Heterogeneous Conditions”, Combustion Science & Technology, Vol.88,
    pp. 349-368 (1993).
    Babushok, V. I. and Tsang, W., “Gas-Phase Mechanism for Dioxin
    Formation”, Chemosphere, Vol.51, pp 1023-1029 (2003).
    Ballschmiter, K., W. Zoller, C. Scholtz and A. Nottrodt, “Destruction of PCDD
    and PCDF in Bleached Pulp by Chlorine Dioxide Treatment”,
    Chemosphere, Vol. 12, pp. 585-597 (1983).
    Beer, J. M. and Martin, G. B., “Application of Advanced Technology for NO
    Control: Alternate Fuels and Fluidized Bed Coal Combustion”, AIChE
    Symposium Series, Vol. 74, pp. 93-114 (1978).
    Bosch H and Janssen F., “De-NOx Catalyst Review”, Catalyst Today, Vol. 2, pp.
    369-532 (1988).
    Chi, K. H., Chang, S. H. and Chang, M. B., “Characteristics of PCDD/Fs
    Distributions in Vapor and Solid Phases and Emissions from the Waelz
    Process”, Environmental Science & Technology, Vol.40, pp. 1770–1775
    (2006).
    Chi, K. H., Chang, S. H. and Chang, M. B., “Reduction of Dioxin-like
    Compound Emissions from a Waelz Plant with Adsorbent Injection and a
    Dual Baghouse Filter System”, Environmental Science & Technology,
    Vol.42, pp. 2111–2117 (2008).
    Devahasdin, S., Fan, C., Jr., Li, K., Chen, D. H., “TiO2 Photocatalytic
    Oxidation of Nitric Oxide: Transient Behavior and Reaction Kinetics”,
    Journal of Photochemistry and Photobiology A: Chemistry, Vol.156, pp. 161
    -170 (2003).
    Dickson, L. C., Lenoir, D. and Hutzinger, O., “Surface-Catalyzed Formation of
    Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”,
    Chemosphere, Vol.19, pp. 277-282 (1989).
    Dickson, L. C., Lenoir, D., Hutzinger, O., “Quantitative Comparison of de
    Novo and Formation of Polychlorinated Dibenzo-p-dioxins under
    Simulated Municipal Solid Waste Incinerator Postcombustion Conditions”,
    Environmental Science & Technology, Vol.26, pp. 1822-1828 (1992).
    Fenimore, C. P. and Moore, J., “Quenched Carbon Monoxide in Fuel-Lean
    Flame Gas”, Combustion and Flame, Vol.22, pp. 343-351 (1974).
    Froese, K. L. and Hutzinger, O., “Polychlorinated Benzene, Phenol, Dibenzo-
    P-dioxin, and Dibenzofuran in Heterogeneous Combustion Reaction of
    acetylene”, Environmental Science and Technology, Vol.30, pp. 998-
    1008(1996).
    Furusawa, T., Honda, T., Takano, J. and Kunii, D., “Abatement of Nitric Oxide
    Emission in Fluidized Bed Combustion of Coal”, Chemical Engineering of
    Japan, Vol. 11, pp. 377-383 (1978).
    Griffin, R.D., “A New Theory of Dioxin Formation in Municipal Solid Waste
    Combustion”, Chemosphere, Vol.15, pp. 1987-1990 (1986).
    Gullett, B. K., Bruce, K. R., Beach, O.L., “Effect of Sulfur Dioxide on the
    Formation Mechanism of Polychlorinated Dibenzodioxin and
    Dibenzofuran Municipal Waste Combustors”, Environmental Science &
    Technology, Vol.26, pp. 1938-1943 (1992).
    Hagenmaier, H., Jraft, M., Brunner, H., Haag, R., “Catalytic Effect of Fly Ash
    from Waste Incineration Facilities on the Formation and Decomposition of
    Polychlorinated Dibenzo-p-dioxions and Polychlorinated Dibenzofurans”,
    Environmental Science & Technology, Vol.21, pp. 1080-1084 (1987).
    Harrison, R. M., Rapsomanikis, S., “Environmental analysis using chromatography
    interfaced with atomic spectroscopy”, Ellis Horwood Chichester, England,
    (1989).
    Hong, S. C., Lee, S. M., Park, K. H., MnOx/CeO2-TiO2 Mixed Oxide Catalysts
    for the Selective Catalytic Reduction of NO with NH3 at Low
    Temperature”, Chemical Engineering Journal, Vol.195, pp. 323-331
    (2012).
    Houser, T. J., M. E. Mcarville and Gu. Z. Ying, “Nitric-Oxide Formation from
    Fuel Nitrogen Model-Compound”, Fuel, Vol.67, pp. 642-650 (1988).
    Kamata, H., Ueno, Shun-ichiro, Naito, T., Yamaguchi, A. and Ito, S., “Mercury
    Oxidation by Hydrochloric Acid over a VOx/TiO2 Catalyst”, Catalysis
    Communications, pp. 2441–2444 (2008).
    Kamata, H., Ueno, Shun-ichiro, Sato, N. and Naito, T., “Mercury Oxidation by
    Hydrochloric Acid over TiO2 Supported Metal Oxide Catalysts in Coal
    Combustion Flue Gas”, Fuel Processing Technology, Vol. 90, pp. 947-951
    (2009).
    Kapteijn, F., Singoredjo, L , Nico J. J. Dekker, Jacob A. Moulijn, “Kinetics of
    the Selective Catalytic Reduction of NO with NH3 over Mn2O3-
    WO3/γ-alumina”, Industrial & Engineering Chemistry Research,
    Vol. 32, pp. 445-452 (2009).
    Kellie, S., Duan, Y., Cao, Y., Chu, P., Mehta, A., Carty, R., Liu, K., Pan, W. P.
    and Riley, J. T., “Mercury Emissions from a 100 MW Wall fired Boiler as
    Measured by Memicontinuous Mercury Monitor and Ontario Hydro
    Method”, Fuel Processing Technology, Vol.85, pp. 487-499 (2004).
    Koebel, M., Madia, G., Elsener, M., “Selective Catalytic Reduction of NO and
    NO2 at Low Temperature”, Catalysis Today, Vol.73, pp. 239-247 (2002).
    Komatsu, T., Nunokawa, M., Moon, I.S., Takahara, T., Namba, S., Yashima, T.,
    “Kinetic Studies of Reduction of Nitric Oxide with Ammonia on Cu2+-
    Exchanged Zeolites”, Journal of Catalysis, Vol.148, pp. 427-437 (1994).
    Lange, N. A., “Handbook of Chemistry”, McGraw–Hill, New York,
    pp. 288-290 (1976).
    Lim, K. J., “Environmental Assessment of Utility Boiler Combustion
    Modification NOx Controls”, Vol.1 Technical Results, EPA-600/7-80-075a
    (1980).
    Liu, Y., Wang, H. and Wu, Z., “Catalytic Oxidation of Gas-phase Mercury over
    Co/TiO2 Catalysts Prepared by Sol-gel Mothed”, Catalysis
    Communications, pp. 1291-1294 (2011).
    Lutter, R. and Irwin, E., “Mercury in the Environment: A Volatile Problem”,
    Environment, Vol.44, pp. 24-40 (2002).
    McKay, G., “Dioxin Characterisation Formation and Minimisation during
    Municipal Solid Waste (MSW) Incineration: Review”, Chemical
    Engineering Journal, Vol.86, pp. 343-368 (2002).
    Miller, G. T., Jr., “Living in the Environment. An Introduction to
    Environmental Science”, 7th ed., California, Wadsworth, pp. 705 (1992).
    Milligan, M. S. and Altwicker, E., “Formation of Dioxins: Competing Rates
    between Chemical Similar Precursors and De Novo Reaction”,
    Environmental Science & Technology, Vol.27, pp. 1595-1601 (1993).
    Ogawa, H., Orita, N., Horaguchi, M., Suzuki, T., Okada, M., Yasuda, S.,
    “Dioxin Reduction by Sulfur Component Addition”, Chemosphere, Vol.32,
    pp. 151-157 (1996).
    Pefia, D.A., Uphade, B.S., Smirniotis, P.G., “TiO2-supported Metal Oxide
    Catalysts for Low-temperature Selective Catalytic Reduction of NO with
    NH3: I. Evaluation and Characterization of First Row Transition Metals”,
    Journal of Catalysis, Vol.221, pp. 421-431 (2004).
    Qi, G., Yang, R. T., Chang, R., “MnOx-CeO2 Mixed Oxides Prepared by
    Co-precipitation for Selective Catalytic Reduction of NO with NH3 at Low
    Temperatures”, Applied Catalysis B: Environmental, Vol.51, pp. 93-106
    (2004).
    Richardson, R., “NOx Scrubbing Technology Breakthrough”, NASF Surface
    Technology White Papers, Vol.76, pp. 1-7 (2014).
    Schroeder, W. H. and Munthe, J., “Atmospheric Mercury - An Overview”,
    Atmospheric Environment, Vol.32, pp. 809-822 (1998).
    Schuster, E., “The Behavior of Mercury in the Soil with Special Emphasis on
    Complexation and Adsorption Processes-a Review of the Literature”,
    Water, Air and Soil Pollution, Vol.56, pp. 667-680 (1991).
    Shaub, W. M. and Tsang, W., “Dioxin Formation in Incinerators”,
    Environmental Science & Technology, Vol.17, pp. 721-730 (1983).
    Shaw, J. T., “Emissions of Nitrogen Oxides in Fluidized-bed Combustion and
    Applications”, Applied Science Publishers, London and New York, Chap.
    6, pp.227-260 (1983).
    Sjovall, H., Olsson, L., Fridell, E., Blint, R. J., “Selective Catalytic Reduction
    of NOx with NH3 over Cu-ZSM-5 - The Effect of Changing the Gas
    Composition”, Applied Catalysis B: Environmental, Vol.64, pp. 180-188
    (2006).
    Stieglitz, L. and Vogg, H., “On Formation Conditions of PCDD PCDF in Fly-
    ash from Municipal Waste Incinerators”, Chemosphere, Vol.16, pp. 1917-
    1922 (1987).
    Sun, R. D., Irie, H., Nishikawa, T., Nakajima, A., Watanabe, T., Hashimoto, K.,
    “Suppressing Effect of CaCO3 on the Dioxins Emission from Poly Vinyl
    Chloride (PVC) Incineration”, Polymer Degradation and Stability, Vol.79,
    pp. 253-256 (2003).
    Tae S. P., Soon K. J., Sung H. H., “Selective Catalytic Reduction of Nitrogen
    Oxides with NH3 over Natural Manganese Ore at Low Temperature”,
    Industrial & Engineering Chemistry Research, Vol. 40, pp. 4491-4495
    (2001).
    Weber, R., Sakurai, T., and Hagenmaier, H., “Low Temperature Decomposition
    of PCDD/PCDF, Chlorobenzenes and PAHs by TiO2-based V2O5-WO3
    Catalysts”, Applied Catalysis B: Environmental, Vol.20, pp. 249-256
    (1999).
    Wu, C. Y., Li, H., Li, Y., Zhang, J., “Superior Activity of MnOx-CeO2/TiO2
    Catalytic Oxidation of Elemental Mercury at Low Flue Gas
    Temperatures”, Applied Catalysis B: Environmental, Vol.111, pp. 381-388
    (2012).
    吳榮宗,工業觸媒概論,國興出版社,1989。
    王仁澤,環境與工業毒物學,高立圖書有限公司,1993。
    孫瑞遠,蜂巢式氧化銅觸媒對氮氧化物還原反應之研究,國立成功大學航太
    所碩士,2007。
    楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環工所碩
    士論文,2000。
    吳俊欣,都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂
    解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試,國立中山大學環
    工所碩士論文,2000。
    張君正、張木彬,氮氧化物生成機制與控制技術之探討,工業污染防
    治,第50期,1994。
    竹內浩士、指宿堯嗣,光觸媒商業最前線,全華科技圖書股份有限公
    司, 2005。

    QR CODE
    :::