| 研究生: |
林俊廷 Chun-Ting Lin |
|---|---|
| 論文名稱: |
全像頻譜分光技術之太陽光電效率改善研究 Spectrum-division element of Stacked Volume Hologram for Enhancing Solar Photovoltaic Conversion Efficiency |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 全像術 、太陽頻譜分光元件 、太陽能電池系統 、熱效應 、光電轉換效率 、全像堆疊技術 |
| 外文關鍵詞: | holographic technique, spectrum-division element, solar system, thermal effect, photovoltaic conversion efficiency, stacked volume holograms |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出以全像技術製作一太陽頻譜分光元件應用於砷化鎵太陽能電池系統,用以改善因紅外光波段照射而產生之熱效應所造成光電轉換效率降低之問題。在此,研究針對太陽光譜設計三張繞射不同紅外光波段中心波長之全像分光光柵,且利用多片單次曝光全像分光光柵堆疊之技術完成本論文所提出之堆疊全像分光元件。實驗結果顯示,各全像分光光柵之繞射校率分別為80.2%、85.59%與62.67%,繞射中心波長偏移量約為-7 ~ +65nm,且堆疊後之繞射效率頻譜與模擬趨勢接近;再者,藉由太陽光模擬器重建堆疊元件並全程監控量測受長時間照射之太陽能電池的表面溫度與光電轉換效率,結果顯示,本研究所設計之堆疊全像分光元件加入與否,其溫度降低約2.9°C,且同時獲得近8%之光電轉換效率提升。
For common solar cell, the lower photovoltaic conversion efficiency is mainly caused by unnecessary thermal of infrared radiation. Therefore, a solar spectrum-division technique by stacked volume holograms is proposed to separate the infrared spectra to reduce the thermal effect. In our research, we are going to design three different holographic grating, from which diffract different spectrum parts the incident beam. The diffraction spectrum for each hologram had been computed by the detected transmission spectrum and the diffraction efficiencies of reconstruction wavelengths are 80.2%, 85.9%, and 62.67%, respectively. Moreover, the reconstruction wavelength had been deviated around -7 ~ +65nm. And further, using temperature and photovoltaic conversion efficiency measurement modes are confirmed the ability of spectrum-division element. Compare with these two conditions, with or without element, the experiment results show that the temperature difference is 2.9°C and the photovoltaic conversion efficiency is enhanced around 8%.
[1].D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25 (5), 676-677 (1954).
[2].H. Tabor, “Selective radiation I-Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A: Chem 5, 119-128 (1956).
[3].T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, M. Yamaguchi, and M. J. Yang, “Two-Terminal Monolithic In0.5Ga0.5P/GaAs Tandem Solar Cells with a High Conversion Efficiency of Over 30%,” J. Jpn. App. Phy. 36 (10), 6215-6220 (1997).
[4].W. Dawidowski, B. Ściana, I. Zborowska-Lindert, M. Mikolášek, M. Latkowska, D. Radziewicz, D. Pucicki, K. Bielak, M. Badura, J. Kováč, and M. Tłaczała, “AP-MOVPE Technology and Characterization of InGaAsN p-i-n Subcell for InGaAsN/GaAs Tandem Solar Cell,” J. Elec. Tele. 60 (2), 151-156 (2014).
[5].R. D. Schaller, V. I. “Klimov, High efficiency carrier multiplication in PbSe nanocrystals, Implications for solar energy conversion,” Phys. Rev. Lett. 92 (18), 186601 (2004).
[6].林志遠,「GaAs/In (0.5) Ga (0.5) P 雙接面太陽能電池磊晶與製程的設計」,國立交通大學,碩士論文,民國100年。
[7].Allen Jong-Woei Whang, Yi-Yung Chen, Bo-Yi Wu , “Innovative design of cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight,”, Solar Energy 83 (8), 1115-1122 (2009).
[8].P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Exp. 18 (9), A25-A40 (2010)
[9].D. Feuermann, J. M. Gordona, and H. Riesc “High-flux solar concentration with imaging designs,” Solar Energy 65 (2), 83-89 (1999).
[10].E. Skoplaki, J. A. Palyvos, “Operating temperature of photovoltaic modules: A survey of pertinent correlations,” Renew. Energy 34, 23-29 (2009).
[11].M. Grundmann, The Physics of Semiconductors, Springer, 2nd ed. (2006).
[12].J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, Wiley, 4th ed. (2005).
[13].M. Shuying, C. Lidong, S. Lei, L. Shengtao, Z. Liang, and L. Shiguang, “Design of the Temperature Control System of Solar Cell Lamination Machine,” Computer Auto. Eng. IEEE 3, 506-509 (2010).
[14].M M. Musthafa, “Enhancing Photoelectric Conversion Efficiency of Solar Panel by Water Cooling,” J. Fund. Renew. Energy Appl. 5 (4), 1000166 (2015).
[15].L. Zhu, R. F Boehm, Y. Wang, C. Halford, and Y. Sun, “Water immersion cooling of PV cells in a high concentration system,” Solar Energy Mat. Solar Cells 95, 538–545 (2011).
[16].H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic Color Filters Integrated with Organic Solar Cells for Energy Harvesting,” ACS Nano. 5 (9), 7055-7060 (2011).
[17].S. Pélisset, M. Joly, V. Chapuis, A. Schüler, S. Mertin2, V. Hody-Le Caër C. Ballif1, and L.-E. Perret-Aeb, “Efficiency of silicon thin-film photovoltaic modules with a front coloured glass,” CISBAT International Conference, (Lausanne, 2011), pp.37-42.
[18].Z. I. Al -Assadi, N. K. Ibrahim, H. G. Daway, A.-H. Kh. Elttayef, and A.l M. Al -Hillou, “Simulation and design of multilayer interference filters of coloured glazed thermal solar collectors for different design wavelengths,” Int. J. Appl. Inn. Eng. Man. 3 (2), 293-302 (2014).
[19].Y. Wu, W. Zheng, L. Lin, Y. Qu, and F. Lai, “Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure,” Solar Energy Mat. Solar Cells 115, 145-150(2013).
[20].P. Hariharan, Basic of holographic, Cambridge, 1st ed. (2002).
[21].C.G. Stojanoff, R. Kubitzek, S. Tropartz, K. Frohlich, and O. Brasseur, “Design, fabrication and integration of holographic dispersive solar concentrator for terrestrial applications,” Proc. SPIE 1536, 206-214 (1991).
[22].Y. K. Tsai, Y. T. Huang, and D.C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582-5588 (1995).
[23].J. -T. Chang, D. -C. Su, “A wavelength and polarization selector made of holographic polarization beamsplitting cubes for optical communications” Appl. Phys. Lett. 70 (14), 1805-1807 (1997).
[24].陳逸寧,基礎雷射全像術,全華科技圖書股份有限公司,1st ed. (2005)。
[25].黃惠良,曾百亨等人,太陽能電池,五南文化事業,1st ed. (2008).
[26].A. Ibrahim, “Analysis of electrical characteristics of photovoltaic single crystal silicon solar cells at outdoor measurements,” Smart Grid Renew. Energy 2, 169-175 (2011).
[27].A.Q. Malik, “Outdoor testing of single crystal silicon solar cells,” Renew. Energy 28, 1433-1445 (2003).
[28].R. G. Ross, “Interface design considerations for terrestrial solar cell modules,” Proceedings of the 12th IEEE photovoltaic specialists conference, (Baton Rouge, 1976) pp. 801-806.
[29].P. Singh, and N. M. Ravindra, ” Temperature dependence of solar cell performance—an analysis,” Solar Energy Mat. Solar Cells 101, 36-45 (2012).
[30].M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, D. Roncati, L. Kimerling, and J. Michel “Single element spectral splitting solar concentrator for multiple cells CPV system,” Opt. Exp. 20 (8), 9004-9018 (2012).
[31].D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206 (2), 375-378 (2009).
[32].W. Welford, R. Winston, High collection nonimaging optics (Academic Press, New York, 1989).
[33].李正中,薄膜剛學與鍍膜技術,藝軒圖書出版社,7st ed. (2012).
[34].B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19 (1), 61-72 (2011).
[35].R. Appels, B. Lefevre, B. Herteleer, H. Goverde, G. Etienne, K. De Medts, J. Driesen, and J. Poortmans, “Practical implementation of spectrum splitting for solar cells,” EU PVSEC Programme Planner, (Amsterdam, 2014).
[36].M. A. Green, A. Ho-Baillie, “Forty three per cent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl. 18, 42-47 (2010).
[37].R. L. Moon, L. W. James, H. A . Vander Pla, T. O. Yep, G. A. Antypas, and Y. Chai, “Multigap solar cell requirements and the performance of AlGaAs and Si cells in concentrated sunlight,” Proceeding of the 13th IEEE Photovoltaic Specialists Conference, (Washington, 1978) pp. 895-967.
[38].D. Zhang , M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468 (846807), 1-10 (2012).
[39].H. D. Tholl, C. G. Stojanoff, “Performance and bandwidth analysis of holographic solar reflectors,” Proc. SPIE 1016, 233-238 (1988).
[40].W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21 (20), 3739-3742 (1982).
[41].D. Gabor, “A new microscope principle,” Nature 161, 777-778 (1948).
[42].H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell Sys. Tech. J.48, 2909-2947 (1969).
[43].E. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J Opt. Soc. Am. 52, 1123-1128 (1962).
[44].R. Alferness, S. K. Case, “Coupling in doubly exposed, thick holographic gratings,” J. Opt. Soc. Am. 65 (6), 730-739 (1975).
[45].J. T. LaMacchia, C. J. Vincelette, “Comparison of the diffraction efficiency of multiple exposure and single exposure holograms,” Appl. Opt. 7 (9), 1857-1858 (1968).
[46].N. K. Mohan, Q. T. Islam, “Design of an off-axis HOE light concentrator to focus light from multiple directions in a plane,” Opt. Lasers Eng. 44, 943-953 (2006).
[47].H. D. Tholl, R. Kubiza, and C.G. Stojanoff, “Stacked volume holograms as light directing elements,” Proc. SPIE 2255, 486-496 (1994).
[48].W. Chao, S. Chi, “Novel holographic colour filters with double-transmission holograms,” J. Opt. 29, 259–264 (1998).
[49].陳敬恒,「使用全像空間偏離偏極器之多埠光學循環器」,國立交通大學,博士論文,民國93年。
[50].J. M. Kim, B. S. Choi, Y. S. Choi, J. M. Kim, H. I. Bjelkhagen, and N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements,” Appl. Opt. 41 (8), 1522-1533 (2002).
[51].B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18 (14), 2407-2417 (1979).
[52].J. M. Kim, B. S. Choi, S. I. Kim, J. M. Kim, H. I. Bjelkhagen, and N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part I. Transmission holographic optical elements,” Appl. Opt. 40 (5), 622-632 (2001).
[53].QEX7 Solar Cell Spectral Response / Quantum Efficiency / IPCE Measurement System (http://www.pvmeasurements.com/Products/Discontinued-Products/qex7-solar-cell-spectral-response-quantum-efficiency-ipce-measurement-system.html).
[54].Slavich, Holographic material, Dichromated gelatin emulsion (blue & green) (http://www.slavich.com/holo_dg-blue-green)
[55].M. Verhaegen, and V. Verdult, Filtering and System Identification: A Least Squares Approach, (Cambridge University, 2007).
[56].S. K. Case, R. Alferness, “Index modulation and spatial harmonic generation in dichromated gelatin films,” Appl. Phys. 10, 41-51 (1976).
[57].C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage correction of volume phase holograms for optical interconnects,” Proc. SPIE 3005, 224-229 (1997).
[58].蔡建雄,「聚光太陽電池模組溫度量測分析與預測技術建立」,行政院原子能委員會,委託研究計畫研究報告,民國101年。