跳到主要內容

簡易檢索 / 詳目顯示

研究生: 施驊珊
Hua-Shan Shi
論文名稱: 冥王星與其它矮行星的大氣季節性演化
The Seasonal Evolution of the Atmospheres of Pluto and Other Dwarf Planets
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 80
中文關鍵詞: 冥王星史波尼克高原熱模型氮冰
外文關鍵詞: Pluto, Sputnik Planitia, thermal model, nitrogen ice
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去幾十年,古柏帶的矮行星對我們而言過於遙遠,以致於無法透過地面望遠鏡或太空望遠鏡進行詳細的觀測研究。而NASA的新視野號於2015年7月飛越冥王星系統,使我們對這些遙遠的物體有更多了解。透過新視野號近距離的飛掠觀測,發現冥王星上的大型心型地區—湯博區。湯博區是此次太空任務最重要的發現之一,它位於冥王星北半球的赤道至中緯地區,與冥衛一凱倫處於潮汐鎖定的對位。史波尼克高原位於湯博區的左半邊,為冥王星最高反照率的冰層地形,觀測資料顯示該地區主要是由氮冰及其他種類,如:甲烷、碳氫化合物的冰塊凝結而成。除此之外,冥王星的大氣組成在這次的觀測任務中被精確地觀測,稀薄的大氣層主成分為氮氣及少量的二氧化碳。由上述兩項結果推論,冥王星的大氣變化很可能是由史波尼克高原上的氮冰所控制。
    在這份研究中,我們建立季節演化的熱模型,計算史波尼克高原在偏心軌道上圍繞太陽公轉時,氮冰的昇華過程與熱傳導效應造成的表面溫度與大氣壓力變化。這套模型能夠探索冰冷矮行星的大氣含量與質量損失過程,另外,我們會將這個模型應用於古柏帶中其他成分組成類似冥王星的矮行星。


    Dwarf planets in Kuiper belt are too far for us to study in detail by telescopic observations from Earth for past several decades. After the New Horizons spacecraft’s flyby observations of the Pluto-Charon system in July 2015, we now have a better understanding of these faraway objects.
    The Sputnik Planitia of Pluto is one of the most important discoveries of the New Horizons spacecraft at its flyby observations of the Pluto-Charon system in July 2015. SP is located at the northern mid-latitude hemisphere in the antipodal position to Charon on the opposite side. It contains a large quantity of the nitrogen ice on Pluto and the content of Pluto’s atmosphere is likely controlled by the variable sublimation rate of the Sputnik Planitia’s ice.
    In this work, we use a coupled treatment to compute the surface temperature and pressure of the Sputnik Planitia on Pluto when it revolves around the sun in its eccentric orbit with special attention to the sublimation process of the nitrogen ice stored in the Sputnik Planitia. In addition, we will apply this model to other Pluto-like dwarf planets in Kuiper belt which surfaces could be mainly composed of nitrogen ice. This set of model calculations allows us to explore the range of the atmospheric contents and mass loss process of the icy dwarf planets.

    摘要 .............................................i Abstract ........................................ii 致謝 ...........................................iii Contents .........................................v List of Figures ................................vii List of Table ..................................xii Chapter 1. Introduction ..........................1 1.1 Origins ......................................1 1.2 Discovery of Pluto ...........................2 1.3 Resonance with Neptune .......................3 1.4 Binary System of Pluto-Charon ................4 1.5 Dwarf Planets on Kuiper Belt .................6 Chapter 2. Observation ...........................8 2.1 Past observation of Pluto by Ground-Based Telescope and Hubble Space Telescope .....8 2.2 New Horizons Mission .........................9 2.3 The Surface Composition of Pluto ............10 2.4 The Atmosphere of Pluto .....................12 Chapter 3. Atmospheric Evolution Model ..........18 3.1 Pluto Thermal Model .........................18 3.1.1 Nitrogen Sublimation and Condensation .....19 3.1.2 Thermal Conduction ........................21 3.2 Pluto’s Orbital Model .......................23 Chapter 4. Results and Discussion ...............26 4.1 Solar Insolation ............................26 4.2 Pluto's Diurnal Variation ...................52 4.3 Pluto's Seasonal Variation ..................56 Chapter 5. Conclusion ...........................61 Bibliography ....................................62

    [1] Bertrand, T., & Forget, F. (2016). Observed glacier and volatile distribution on Pluto from atmosphere–topography processes. Nature. doi:10.1038/nature19337
    [2] Binzel, R. P., Earle, A. M., Buie, M. W., Young, L. A., Stern, S. A., Olkin, C. B., . . . Team, t. N. H. G. a. G. I. (2017). Climate zones on Pluto and Charon. Icarus(287), 30–36.
    [3] Brown, M. E. (2011). The compositions of Kuiper belt objects. Annual Review of Earth and Planetary Sciences.
    [4] Canup, R. M. (2005). A Giant Impact Origin of Pluto-Charon. Science, 307(5709), 546-550.
    [5] Cowan, J. J., & A'Hearn, M. F. (1979). Vaporization of comet nuclei: Light curves and life times. The moon and the planets, 21(2), 155-171.
    [6] Croswell, K. (1997). PLANET QUEST: The Epic Discovery of Alien Solar Systems: New York: The Free Press.
    [7] Fray, N., & Schmitt, B. (2009). Sublimation of ices of astrophysical interest: A bibliographic review. Planetary and Space Science, 57.
    [8] Gladstone, G., Stern, S. A., Ennico, K., Olkin, C. B., Weaver, H. A., Young, L. A., . . . Team, t. N. H. S. (2016). The atmosphere of Pluto as observed by New Horizons. Science, 351(6279).
    [9] Grundy, W. M., Cruikshank, D. P., Gladstone, G. R., Howett4, C. J. A., Lauer, T. R., Spencer 4, J. R., Team, t. N. H. S. (2016). The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature Letter.
    [10] Grundy, W. M., & Stansberry, J. A. (2000). Solar Gardening and the Seasonal Evolution of Nitrogen Ice on Triton and Pluto. ICARUS, 148, 340–346.
    [11] Hamilton, D. P., Stern, S. A., Moore, J. M., Young, L. A., Geology, t. N. H., & Team, G. I. T. (2016). The rapid formation of Sputnik Planitia early in Pluto’s history. Nature, 540, 97–99.
    [12] Hansen, C. J., & Paige, D. A. (1996). Seasonal Nitrogen Cycles on Pluto. ICARUS, 120, 247–265.
    [13] Hoyt, W. G. (1976). W. H. Pickering's Planetary Predictions and the Discovery of Pluto. Isis, 67(4), 551–564.
    [14] Huebner, W. F., Benkhoff, J., Capria, M.-T., Coradini, A., Sanctis, C. D., Orosei, R., & Prialnik., D. (2006). Heat and Gas Diffusion in Comet Nuclei. ISSI.
    [15] Leighton, R. B., & Murray, B. C. (1966). Behavior of Carbon Dioxide and Other Volatiles on Mars. Science, 153(3732), 136-144.
    [16] Levison, H. F., Morbidelli, A., VanLaerhoven, C., Gomes, R., & Tsiganis, K. (2008). Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. ICARUS, 196(1), 258-273.
    [17] Lubbock, C. A. (1933). The Herschel Chronicle: The Life-story of William Herschel and His Sister, Caroline Herschel: New York, The Macmillan company; Cambridge, Eng., The University press,.
    [18] Malhotra, R. (1993). The origin of Pluto's peculiar orbit. Nature, 365, 819–821.
    [19] Smart, W. M. (1947). John Couch Adams and the Discovery of Neptune. Occasional Notes of the Royal Astronomical Society, 2, 33-88.
    [20] Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., & W. M. Grundy, W. B. M., J. M. Moore, C. B. Olkin, J. R. Spencer, H. A. Weaver, L. A. Young, T. Andert, J. Andrews,M. Banks, B. Bauer, J. Bauman, O. S. Barnouin, P. Bedini, K. Beisser, R. A. Beyer,S. Bhaskaran, R. P. Binzel, E. Birath, M. Bird, D. J. Bogan, A. Bowman, V. J. Bray,M. Brozovic, C. Bryan, M. R. Buckley, M. W. Buie, B. J. Buratti, S. S. Bushman, A. Calloway,B. Carcich, A. F. Cheng, S. Conard, C. A. Conrad, J. C. Cook, D. P. Cruikshank, O. S. Custodio,C. M. Dalle Ore, C. Deboy, Z. J. B. Dischner, P. Dumont, A. M. Earle, H. A. Elliott, J. Ercol, C. M. Ernst, T. Finley, S. H. Flanigan, G. Fountain, M. J. Freeze, T. Greathouse, J. L. Green, Y. Guo, M. Hahn, D. P. Hamilton, S. A. Hamilton, J. Hanley, A. Harch, H. M. Hart, C. B. Hersman, A. Hill, M. E. Hill, D. P. Hinson, M. E. Holdridge, M. Horanyi, A. D. Howard, C. J. A. Howett, C. Jackman, R. A. Jacobson, D. E. Jennings, J. A. Kammer, H. K. Kang, D. E. Kaufmann, P. Kollmann, S. M. Krimigis, D. Kusnierkiewicz, T. R. Lauer, J. E. Lee, K. L. Lindstrom, I. R. Linscott, C. M. Lisse, A. W. Lunsford, V. A. Mallder, N. Martin, D. J. McComas, R. L. McNutt Jr., D. Mehoke, T. Mehoke, E. D. Melin, M. Mutchler, D. Nelson, F. Nimmo, J. I. Nunez, A. Ocampo, W. M. Owen, M. Paetzold, B. Page, A. H. Parker, J. W. Parker, F. Pelletier, J. Peterson, N. Pinkine, M. Piquette, S. B. Porter, S. Protopapa, J. Redfern, H. J. Reitsema, D. C. Reuter, J. H. Roberts, S. J. Robbins, G. Rogers, D. Rose, K. Runyon, K. D. Retherford, M. G. Ryschkewitsch, P. Schenk, E. Schindhelm, B. Sepan, M. R. Showalter, K. N. Singer, M. Soluri, D. Stanbridge, A. J. Steffl, D. F. Strobel, T. Stryk, M. E. Summers, J. R. Szalay, M. Tapley, A. Taylor, H. Taylor, H. B. Throop, C. C. C. Tsang, G. L. Tyler, O. M. Umurhan, A. J. Verbiscer, M. H. Versteeg, M. Vincent, R. Webbert, S. Weidner, G. E. Weigle II, O. L. White, K. Whittenburg, B. G. Williams, K. Williams, S. Williams, W. W. Woods, A. M. Zangari, E. Zirnstein (2015). The Pluto system: Initial results from its exploration by New Horizons. Science, 350(6258).
    [21] Stern, S. A., Kammer, J. A., Gladstone, G. R., Steffl, A. J., Cheng, A. F., Young., L. A., . . . Team, a. t. N. H. A. (2016). New Horizons Constraints on Charon’s Present Day Atmosphere. Icarus, in revision.
    [22] Tombaugh, C. (1946). The search for the ninth planet, Pluto. Astronomical Society of the Pacific, 209.
    [23] Weaver, H. A., Gibson, W. C., Tapley, M. B., Young, L. A., & Stern, S. A. (2008). Overview of the New Horizons science payload. Space Sci. Rev., 140, 75-92.

    QR CODE
    :::