跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林耿立
Keng-Li Lin
論文名稱: 透過代數幾何計算環面上平均場方程解的個數
Counting solutions of the mean field equations on tori viaalgebraic geometry
指導教授: 王金龍
Chin-LungWang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 43
中文關鍵詞: 代數幾何平均場方程
外文關鍵詞: algebraic geometry, mean field equations
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 關於環面上的奇異平均場方程,在單一Dirac奇異點的係數為4π(2k+1)時林長壽教授與王金龍教授曾給出一個猜想:解的個數恰好等於其拓樸度數。
    吾等發現如此的非線性方程原來是代數可積的,並且此計數問題可化約至對某一個仿射多項式系統計算。
    我们提出兩個都基於代數幾何的方法來證明此一猜想。第一個方法是基於射影的Bézout定理與殘餘相交理論,運用此一方法我们可以證實該猜想到k≦5的情形。射影化系統中多出之無窮遠解的結構牽涉到某種對稱的組合與精緻的多面體結構,這些結搆似乎與其他數學領域有關並值得進一步研究。
    第二個方法是對所有k在仿射方程組上的同倫法。這部分仍存在一些證明上的空白,所以吾等僅提及其想法與一些關鍵點。希望這將會在未來給出該猜想一個直接的證明。


    It is conjectured by C.-S. Lin and C.-L. Wang.
    cite{LW2} that the number $N_k$ solutions for the
     singular mean field equation on tori (with the
     coefficient $4pi(2k + 1)$ of the delta singularity
    ) should be equal to its topological degree $k+1$
     for each $k in mathbb{N}$ cite{LW2}. We
     verifies the case of $k = 4$ and $5$ via
    intersection theory. In these cases, it shows that
     the solution toward the general cases involves
     some symmetrically combinatorial and delicately
     polyhedron structures.

    1 Introduction 1 2 Reduction from PDE to polynomial systems 3 2.1 Fundamental results . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The canonical representation of solutions . . . . . . . . . . . 6 2.3 The correspondence theorem . . . . . . . . . . . . . . . . . . 7 2.4 The case k = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Approach by intersection theory 17 3.1 The residual intersection formula . . . . . . . . . . . . . . . . 17 3.2 The case k = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 The case k = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Some partial results for the general case . . . . . . . . . . . . 34 3.5 The symmetry and combinatorics behind the system . . . . . 38 4 An approach by the homotopy method 41 References 42

    H. Brezis and F. Merle; Uniform estimates and blow
    -up behavior for solutions of -Delta u=V(x) e^u
     in two dimensions, Comm. Partial Differential
    Equations 16 (1991), 1223-1254.
    D. Bartolucci and G. Tarantello; The Liouville
    Equation with Singular Data: A Concentration
    -Compactness Principle via a Local Representation
    Formula, J. Differential Equations Vol. 185, No. 
    1(2002), pp. 161-180.
    ---{}---; Topological degree for a Liouville type
    equation with a singular source, preprint.
    C.-C.~Chen and C.-S.~Lin and Guofang Wang;
    Concentration Phenomena of Two-Vortex Solutions in a
    Chern-Simons Model, Ann. Scuola Norm. Sup. Pisa Cl.
    Sci.(5), Vol. III (2004), pp. 367-397.
    K. S. Chou and Tom Yau-Heng Wan;
    Asymptotic radial symmetry for solutions of 
    Delta u+e^u=0 in a punctured disc, Pacific J.
     Math. Volume 163, Number 2 (1994), 269-276.
    B.H. Dayton and Z. Zeng;
    Computing the Multiplicity Structure in Solving
    Polynomial Systems, Proceedings of the 2005
    international symposium on Symbolic and algebraic
     computation, 116-123.
    W. Fulton; Intersection Theory, Erge. Math. ihr.
     Gren.;3. Folge, Bd 2, Springer-Verlag 1984.
    Y.Y. Li and I. Shafrir, Blow up analysis for
     solutions of -Delta u=V(x)e^u in dimension two,
    Ind. Univ. Math. J. 43 (1994) (4), pp. 1255–1270.
    Tien-Yien Li, Tim Sauer and James A.Yorke; Numberical
    solution of a class of deficient polynomial
     systems, SIAM J Number. Anal., Vol24, No. 2,
     1987.
    C.-S.~Lin and C.-L.~Wang; Elliptic functions, Green
     functions and the mean field equations on tori,
     to appear in Annals of Mathematics, accepted in
     April 2008. arXiv:math/0608358.
    ---{}---; A function theoretic view of the Mean
     field equations on tori, Proceeding of the
     International Conference on Geometric Analysis
     (TIMS, Taipei 2007), International Press 2008.
    ---{}---; Singular mean field equations on tori,
     preprint 2009.
    http://www.valdostamuseum.org/hamsmith/Weyl.html.

    QR CODE
    :::