| 研究生: |
劉弘松 Hung-Sung Liu |
|---|---|
| 論文名稱: |
結合微放電與研磨技術之高精度微孔加工研究 Study of Micro-EDM combined with Abrasive Finishing method to Micro-hole |
| 指導教授: |
顏炳華
Biing-Hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 微放電加工 、線放電研磨 、抖動研磨 、電解拋光 、微細孔 |
| 外文關鍵詞: | dither, Micro-EDM, WEDG, electropolishing, micro-hole |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高精度的微細孔洞,一直是微細加工技術所追求的目標之一,由於微孔廣泛應用於微閥、微射流口、微感應器、微模具等場合,因此如何使用經濟的方法,來製造高精度的微細孔洞,是本研究的重點。微細放電加工法(micro-EDM)係運用傳統的放電加工原理,以高加工精度、少去除量,微小且穩定能量型態,加工任何導電材料;是製作形狀複雜或硬、脆、韌等難加工材料微細元件的有效方法,這種非接觸式的加工技術經常用來製作孔徑小於100μm的微孔的有效方法之一,但在微細放電加工後,由於工具電極的消耗,會使加工後之微孔形成錐度狀,且微孔的孔壁表面會形成再凝固層、微裂痕與放電坑,孔壁的表面粗糙度不佳,嚴重影響微孔的孔徑尺寸及幾何形狀精度。由於微孔無法以傳統的內圓磨加工法進行加工,因此本研究提出結合微細放電與研磨的精修技術,針對微細放電後表面粗糙度不佳的微孔進行改善研究。
本研究提出的四種研磨精修技術,分別為螺旋研磨法、抖動研磨法、超音波振動研磨法及電解拋光法,針對微細放電後之微孔或異形微孔,進行線上的研磨精修加工,改善微孔的孔壁表面品質。實驗結果顯示,以精修微細圓孔為例,採用螺旋電極研磨法或高頻抖動研磨加工法,孔壁表面均可獲得顯著的研磨效果,表面粗糙度值由研磨前之2.11 Rmax降低至0.85 Rmax,在研磨加工時間上的比較,螺旋電極研磨法約需120分鐘;利用此加工法搭配超音波振動,則加工時間可降至30分鐘,而採用高頻抖動研磨法僅需15分鐘。針對異形微孔;採用超音波研磨法或電解拋光法,由AFM量測表面粗度值顯示,孔壁表面粗度值Rmax由0.957μm(Ra 0.11μm)降至 0.31μm(Ra 0.015μm);再由SEM的觀察顯示,孔璧表面甚為光平。在研磨加工時間上的比較,超音波振動研磨法約需45分鐘,而電解拋光法僅需5分鐘,即可得到光滑平整的微孔孔壁。
High precision micro-holes are one of the objectives that can be fabricated by micro machining method. Since micro-holes are widely used in the micro-valve, micro-fluidics, micro-sensor and micro-mould applications, an economical and effective method producing high accuracy micro-holes is focused in this thesis. Based on the traditional electrical discharge machining (EDM) principle, the micro-EDM can be utilized to fabricate conductive materials with high precision, less material remove rate, micro and stable energy state. Micro-EDM is an effective method to produce fine devices with complex shapes. Hard, brittle or tough materials are easily fabricated by this process. This noncontact manufacturing process is frequently used to produce micro-holes with diameter less than 100 ?m. However, micro-EDM will cause recast layer, discharge craters and micro-cracks on the machined surface with poor surface quality. This affects the precision of diameter and the geometric shape. Moreover, owing to the wear of the electrode during the process, not only will the dimension of the machined micro-hole be changed, but also its shape is severely distorted. Unfortunately, the conventional grinding is difficult to refine the machined surface by inserting the micro-tool into the micro-hole. To solve such problems, in this study, some different finishing methods, followed after the micro-EDM process, were developed to produce a superior refined surface of the micro-hole with almost no machining defects.
After the micro-hole is made by micro-EDM, four kinds of finishing methods will be applied to improve the surface quality of the micro-hole. The four finishing methods are helix grinding method (HG), high frequency dither grinding method (HFDG), ultrasonic vibration grinding method (UVG), and electropolishing method (EP). The shapes of the micro-holes investigated in this study are not only the circular type but also the special shape. Experimental results show that the surface roughness of the micro-hole can be well refined without micro-cracks by each of the proposed methods. For the circular shape of the micro-hole, the HFDG takes only 15 minutes to improve the work surface from 2.11 to 0.85 μm Rmax, while the HG and the UVG require 120 and 30 minutes respectively. By using UVG or EP, the surface roughness of the micro-hole with special shape can be improved from 0.957 μm Rmax (0.11μm Ra) to 0.31 μm Rmax (0.015μm Ra), which is measured by AFM. However, the EP takes only 5 minutes, while the UVG requires 45 minutes.
1.K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture 43 (2003) 1287–1300.
2.E.J. Weller, Nontraditional machining Processes, Society of Manufacturing Engineers, Dearborn, Michigan, USA. 2/e (1983).
3.郭佳儱,微放電加工技術於MEMS 之應用,機械月刊第二十五卷第十一期 (1999) 304-313。
4.機械技術雜誌編輯部,二十一世紀的顯學:微機電系統--微放電精密加工,機械技術雜誌189期 (2000) 220-228。
5.T. Tamura, Y. Kobayashi, Measurement of impulsive forces and crater formation in impulse discharge, Journal of Materials Processing Technology 149 (2004) 212–216.
6.J.D. Ayers, K. Moore, Formation of metal carbide powder by spark machining of reactive metals, Metallurgical Transactions A 15A (1984) 1117–1127.
7.P.C. Pandey, S.T. Jilani, Plasma channel growth and the resolidified layer in EDM, Precision Engineering 8 (2) (1986) 104–110.
8.T. Tsutsui, T. Tamura, Effect of the electro-discharge machined surface on the mechanical properties. On the surface defects and transverse rupture strength of cemented carbide, Bulletin of the Japan Society of Precision Engineering 20 (1) (1986) 60-61.
9.L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh, Quantification of surface damage of tool steels after EDM, International Journal of Machine Tools & Manufacture 28 (4) (1988) 359–372.
10.L.C. Lee, L.C. Lim, Y.S. Wong, H.H. Lu, Towards a better understanding of the surface features of electro-discharge machined tool steels, Journal of Materials Processing Technology 24 (1990) 513–523.
11.L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool steels, Materials Science Technology 7 (3) (1991) 239–248.
12.O.A. Abu, Zeid, On the effect of electro-discharge machining parameters on the fatigue life of AISI D6 tool steel, Journal of Materials Processing Technology 68 (1) (1997) 27–32.
13.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite, International Journal of Machine Tools & Manufacture 40 (10) (2000) 1403–1421.
14.Y.H. Guu, H. Hocheng, C.Y. Chou, C.S. Deng, Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel, Materials Science and Engineering A358 (2003) 37–43.
15.K.M. Shu, G.C. Tu, Study of electrical discharge grinding using metal matrix composite electrodes, International Journal of Machine Tools & Manufacture 43 (2003) 845–854.
16.W. Theisen, A. Schuermann, Electro-discharge machining of nickel–titanium shape memory alloys, Materials Science and Engineering A378 (2004) 200–204.
17.G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flükiger, Microstructure at submicron scale of the white layer produced by EDM technique, Journal of Materials Processing Technology 149 (2004) 289–295.
18.T. Takawshi, Study on the mirror surface machining by planetary EDM, International Symposium of Electro machining ISME-7 (1983) 137-147.
19.N. Mohri, N. Saito, T. Takawshi, K. Kobayashi, Mirro-Like finishing by EDM, International symposium on machine tool design and symposium (1987) 329-336.
20.N. Mohri, N. Saito, H. Ootake, T. Takawashi, K. Kobayashi, Finishing on the large area of work surface by EDM, Journal of Japan Society of Precision Engineering 153 (1) (1987) 124–130.
21.H. Narumiya, N. Mohri, N. Saito, H. Ootake, Y. Tsunekawa, T. Takawashi, K. Kobayashi, EDM by powder suspended working fluid, Proceedings of International symposium for Elcetro- Machining, The Japan Society of Electrical-Machining Engineers (1989) 5-8.
22.N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, Journal of the Japan Society of Precision Engineering 57 (6) (1991) 954-958.
23.B.H. Yan, H.S. Liu, Small electrical discharge machining of Ti-6Al-4V alloy with rotating electrode, Journal of Japan Institute of Light Metals 43 (1993) 225-229.
24.B.H. Yan, S.L Chen, Effect of dielectric with suspended aluminum powder on EDM, J. of the Chinese Society of Mechanical Engineers 14 (3) (1993) 307-312.
25.B.H. Yan, S.L Chen, Characteristics of SKDII by complex process of electrical discharge machining using liquid suspended with aluminum powder, J. of Japan Inst. Metals 58 (9) (1994) 1067-1072.
26.H.M. Chow, B.H. Yan, F.Y. Hung, Study of added powder in kerosene for the micro-slit machine of titanium alloy electro-discharge machining, Journal of Material Processing Technology 101 (2000) 95-103.
27.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite, International Journal of Machine Tools and Manufacture - Design Research and Application 40 (10) (2000) 1403-1422.
28.T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, Wire Electro-Discharge Grinding for Micro-Machining, Annals of the CIRP, 34 (1) (1985) 431-434.
29.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining
Using Water as a working Fluid-I: Micro-hole Drilling, Precision
Engineering, 8 (3) (1986) 156-162.
30.M. Kunieda, T. Masuzawa, A fundamental study on a horizontal EDM, Annals of the CIRP 37 (1) (1988) 187–190.
31.T. Masuzawa, J. Tsukamoto and M. Fujino, Drilling of Deep Microholes by EDM, Annals of the CIRP, 38 (1) (1989) 195-198.
32.K.P. Rajurkar, G.F. Royo, Improvement in EDM performance by R.F. control and orbital motion, American Society of Mechanical Engineers 34 (1989) 51-62.
33.T. Masuzawa, M. Yamamoto and M. Fujino, A Micropunching System Using Wire-EDM, Proc. of Int’l Symposium for Electromachining (ISEM-9) (1989) 86-89.
34.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining Using Water as a working Fluid-2: Narrow Slit Fabrication, Precision Engineering, 12 (4) (1990) 213-217.
35.T. Masaki, K. Kawata and T. Masuzawa, Micro Electo-Discharge Machining and Its Application, Proc. of MEMS ‘90 IEEE (1990) 21-26.
36.C.L. Kuo, T. Masuzawa, M. Fujino, A micro-pipe fabrication process, Proc. Of MEMS ’91 IEEE (1991) 80-85.
37.C.L. Kuo, T. Masuzawa, M. Fujino, High Precision Micronozzle Fabrication Process, Proc. Of MEMS ’92 IEEE (1992) 116-121.
38.T. Masuzawa, C.L. Kuo, M. Fujino, A combined electrical machining process for micronozzle fabrication, Annals of the CIRP 43 (1) (1994)189-192.
39.H.H. Langen, T. Masuzawa, M. Fujino, Modular method for microparts machining and assembly with self-alignment, Annals of the CIRP 44 (1995) 173-176.
40.D.M. Allen, A. Lecheheb, Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters, Journal of Material Processing Technology 58 (1996) 53-66.
41.Xi-Qing Sun, T. Masuzawa and M. Fjino, Micro ultrasonic machining and its applications in MEMS, Sensors and actuators A 57 (1996) 159-164.
42.D. Reynaerts, P.H. Heeren, H.V. Brussel, Microstructuring of silicon by electro-discharge machining (EDM) – part I: theory, Sensors and Actuators A, 60 (1997) 212-218.
43.P.H. Heeren, D. Reynaerts, H.V. Brussel, Three-dimensional silicon micromechanical parts manufactured by electro-discharge machining, Proceeding of MEMS ’97 IEEE (1997) 247-252.
44.Z.Y. Yu, T. Masuzawa, M. Fujino, Micro-EDM for three dimensional cavities – Development of uniform wear method -, Annals of the CIRP 47 (1) 1998 169-172.
45.B.H. Yan, F.Y. Huang, H.M. Chow, J.Y. Tasi, Micro-hole machining of carbide by electrical discharge machining, Journal of Material Processing Technology 87 (1999) 139-145.
46.K. Egashira, T. Masuzawa, Microultrasonic Machining by the Application of Workpiece Vibration, Annals of the CIRP 48 (1) (1999) 131-134.
47.K. Takahata, N. Shibaike, H. Guckel, A novel micro electro-discharge machining method using electrodes fabricated by the LIGA process, Proceeding of MEMS ’99 IEEE (1999) 238-243.
48.游聖恩,電化學拋光改善不銹鋼微細放電槽壁之研究,中央大學 機械工程研究所碩士論文 (2000)。
49.N. Mohri, H. Takezawa, K. Furutani, Y. Ito, T. Sata, A new process of additive and removal Machining by EDM with a thin electrode, Annals of the CIRP 49 (1) (2000) 123-126.
50.K.P. Rajurkar, Z.Y. Yu, 3D micro-EDM using CAD/CAM, Annals of the CIRP 49 (1) (2000) 127-130.
51.M.G. Her, F.T. Weng, Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode, International Journal of Advanced Manufacturing Technology 17 (2001) 715-719.
52.S.H. Yeo and G.G. Yap, A feasibility study on the micro electro-discharge machining process for photomask fabrication, International Journal of Advanced Manufacturing Technology 18 (2001) 7-11.
53.K. Takahata, Y.B. Gianchandani, Batch mode micro-EDM for high-density and high-throughput micromachining, Proceeding of MEMS ’01 IEEE (2001) 72-75.
54.K. Takahata, Y.B. Gianchandani, Batch mode Micro Electro Discharge machining, Journal of micro electro mechanical systems 11 (2) (2002) 102-110.
55.Y. Li, M. Guo, Z. Zhou, M. Hu, Micro electro discharge machine with an inchworm type of micro feed mechanism, Precision Engineering 26 (2002) 7-14.
56.Z.Y. Yu, K.P. Rajurkar, H. Shen, High aspect ratio and complex shaped blind micro holes by micro EDM, Annals of the CIRP 51 (1) (2002) 359-362.
57.K. Egashira, K. Mizutani, Micro-drilling of monocrystalline silicon using a cutting tool, Precision Engineering 26 (2002) 263-268.
58.F.T. Weng, M.H. Her, Study of the batch production of micro parts using the EDM process, International Journal of Advanced Manufacturing Technology 19 (2002) 266-270.
59.T. Mori, K. Hirota, S. Kurimoto, Y. Nakano, Die making of ultra-fine piercing by electric discharge machining, International symposium on micromechatronics and human science (2002) 61-66.
60.黃玉龍、郭佳儱,微放電加工製作微圓盤刀具進行銑削和研削微溝槽之研究,第十九屆機械工程研討會第四冊製造與材料(下) (2002) 747-754。
61.Y. Imai, A. Satake, A. Taneda and K. Kobayashi, Improvement of EDM machining speed by using frequency response actuator, International Journal of Electrical Machining 11 (1996) 21-26.
62.V.S.R. Murti, P.K. Philip, An analysis of the debris in ultrasonic-assisted electrical discharge machining, Wear 117 (1987) 241-250.
63.V.S.R. Murti, P.K. Philip, A comparative analysis of machining characteristics in ultrasonic assisted EDM by the response surface methodology, Int. J. Prod. Res. 25 (2) (1987) 259-272.
64.V.S.R. Murti, P.K. Philip, Pulse train analysis in ultrasonic assisted EDM, International Journal of Machine Tools and Manufacture 27 (24) (1987) 469-477.
65.D. Kremer, J.L. Lebrun, B. Hosari, A, Moisan, Effect of ultrasonic vibrations on the performances in EDM, Annals of CIRP 38 (1) (1989) 199-202.
66.S. Enache, C. Opran, G. Stoica, E. Strajescu, The study of EDM with forced vibration of tool-electrode, Annals of CIRP 39 (1) (1990) 167-170.
67.D. Kremer, C. Lhiaubet, A. Moisan, A study of the effect of synchronizing ultrasonic vibrations with pulse in EDM, Annals of the CIRP 40 (1) (1991) 211-214.
68.B.H. Yan, M.D. Chen, Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy, Journal of Japan Institute of Light Metals 44 (5) (1993) 281-285.
69.J. Zhixin, Z. Jianhua, A. Xing, Ultrasonic vibration pulse electro-discharge Machining of holes in engineering ceramics, Journal of materials processing technology 53 (1995) 811-816.
70.J. Zhixin, A. Xing, Z. Jianhua, Study on mechanical pulse electric discharge machining, Precision Engineering 17 (2) (1995) 89-94.
71.S. L. Chen, F. Y. Huang, Y. Suzuki, B. H. Yan, Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration, Journal of Japan Institute of Light Metals 47 (4) (1997) 220-225.
72.Z.N. Guo, T.C. Lee, T.M. Yue and W.S. Lau, A study of ultrasonic-aided wire electrical discharge machining, Journal of Materials Processing Technology 63 (1997) 823-828.
73.J.H. Zhang, T.C. Lee, W.S. Lau, X. Ax, Spark erosion with ultrasonic frequency, Journal of Materials Processing Technology 68 (1997) 83-88.
74.B.H. Yan, and C.C. Wang, The machining characteristics of Al2O3 /6061Al composite using rotary electro-discharge machining with a tube electrode”, Journal of Materials Processing Technology 195 (1999) 222-231.
75.B.H. Yan, C.C. Wang, W.D. Liu and F.Y. Huang, Machining characteristics of Al2O3 /6061Al composite using rotary EDM with a disklike electrode”, The International Journal of Advanced Manufacturing Technology 16 (2000) 322-333.
76.Y. C. Lin, B. H. Yan, Y. S. Chang, Machining characteristics of titanium alloy (Ti-6Al-4V) using combination process of EDM with USM, Journal of Materials Processing Technology 104 (2000) 171-177.
77.A.R. Jones, J.B. Hull, Ultrasonic flow polishing, Ultrasonic 36 (1998) 97-101.
78.B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3 / 6061Al composite, International Journal of Machine Tools and Manufacture 40 (10) (2000) 1403-1422.
79.G.W. Chang, B.H. Yan, R.T. Hsu, Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives, International Journal of Machine Tools and Manufacture 42 (2002) 575-583.
80.H. Ohmori, T. Nakagawa, Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels, Annals of the CIRP 44 (1) (1995) 287-290.
81.K. Takahata, S. Aoki, T. Sato, Fine surface finishing method for 3-dimensional micro structures, Proceeding of MEMS ’96 IEEE (1996) 73-78.
82.H. Ramasawmy, L. Blunt, 3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces, International Journal of Machine Tools and Manufacture 42 (2002) 567-574.
83.N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, Journal of Japan Society of Precision Engineering 57 (6) (1991) 954-958.
84.B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, Journal of Japan Institute Metals 58 (9) (1994) 1067-1072.
85.N. Mohri, N. Saito, T. Takawashi, K. Kobayashi, Mirror-Like finishing by EDM, International symposium on machine tool design and symposium (1987) 329-336.
86.N. Mohri, N. Saito, H. Ootake, T. Takawashi, K. Kobayashi, Finishing on the large area of work surface by EDM, Journal of Japan Society of Precision Engineering 53 (1) (1987) 124-130.
87.H. Hocheng, P.S. Pa, Electropolishing and electrobrightening of holes using different feeding electrodes, Journal of Materials Processing Technology 89–90 (1999) 440–446.
88.Chunhe Zhang, Hitoshi Ohmori, Wei Li, Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-II) grinding, Journal of Materials Processing Technology 105 (2000) 284-293.
89.C. Zhang, H. Ohmori, W. Li, Precision shaping of small diameter wheels using micro electric discharge truing (MEDT) and hole-machining of Al2O3 material, International Journal of Machine Tools and Manufacture 40 (2000) 661-674.
90.H. Onikura, O. Ohnishi, Y. Take, A. Kobayashi, Fabrication of micro carbide tools by ultrasonic vibration grinding, Annals of the CIRP 49 (1) (2000) 257-260.
91.J. Zhao, J. Zhan, R. Jin, M. Tao, An oblique ultrasonic polishing method by robot for free-form surface, International Journal of Machine Tools and Manufacture 40 (6) (2000) 795-808.
92.吳偉堯、郭佳儱、李季龍、游智翔、黃俊德、解安國,電解微針 狀成形及氣中放電製作微球狀電極之研究,第十九屆機械工程研 討會論文第四冊製造與材料(下) (2002) 731-738。
93.S.J. Lee, J.J. Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel, Journal of Material Processing Technology 140 (2003) 206-210.
94.T. Masuzawa, An Approach to Micromachining through Machine Tool Technology, Annals of the CIRP 34 (1) (1985) 419-425.
95.K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining using water as a working Fluid-1: Micro-hole Drilling, Precision Engineering 8 (3) (1986) 156-162.
96.W. Ehrfeld, H. Lehr, Deep X-Ray Lithography for the production of three-dimensional microstructures from metals, polymers and ceramics, Radiat. Phys. Chem. 45 (3) (1995) 349-365.
97.Seong, S. Choi, Jung, D.W. Kim, M.A. Yakshin, J.Y. Park, Y. Kuk, Frabrication and microelectron gun arrays using laser micromachining , Microelectronic Engineering 41-42 (1998) 167-170.
98.R.K Kupka, F. Bouamrance, C. Cremers, S. Megtert, Mircofabrication: LIGA-X and applications, Applied Surface Science 164 (2000) 97-110.
99.T. Shinmura, T. Aizawa, Study on a New Finishing Process of Fine Ceramics by Magnetic Abrasive Machining – On the Improving Effect of Finishing Efficiency Obtained by Mixing Diamond Magnetic Abrasives with Ferromagnetic Particles, J. of JSPE (in Japanese) 59 (8) (1993) 1251-1256.
100. H. Yamaguchi, T. Shinmura, Study of an internal magnetic abrasive finishing using a pole rotation system Discussion of the characteristic abrasive behavior, Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology 24 (2000) 237-244.
101. T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, Study on Magnetic Abrasive Finishing, Annals of the CIRP 39 (1) (1990) 325-328.
102. 余承業,特種加工新技術,北京,國防工業出版社。
103. T. Lyman, Properties and Selection of Metals, eighth ed. Metals Handbook, vol. 1. American Society for Metals, Metals Park, Ohio. (1975) 785–797.
104. J. Bryzek, Impact of MEMS technology on society, Sensors and Actuators A:Physical 56 (1-2) (1996) 1-9.
105. A.C. Wang, B.H. Yan, X.T. Li, F.Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining, International Journal of Machine Tools and Manufacture 42 (2002) 915-923.
106. C.T. Yang, S.S. Ho, B.H. Yan, Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining, Key Engineering Materials 196 (2001) 149-166.
107. M.C. Shaw, Ultrasonic Grinding, Microtecnic 10 (1956) 257.
108. G.E. Miller, Special Theory of Ultrasonic Machining, Journal of Applied Physics 28 (1957) 149.
109. L.D. Rozenberg et al., Ultrasonic Cutting, Authorized translation from the Russian (New York: Consultants Bureau 1964).
110. E.A. Neppiras, A High-Frequency Reciprocating Drill, Journal of Scientific Instruments 30 (1953) 72.
111. Leonardo R. Allain, Minoo Askari, David L. Stokes, Tuan Vo-Dinh, Microarray sampling-platform fabrication using bubble-jet echnology for a biochip system, Fresenius J Anal Chem. 371 (2001) 146-150.
112. T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on Ultrasonic Machining, International Journal of Machine Tools & Manufacture 38 (1998) 239-255.
113. J. Peacock, Ultrasonic ups grinding efficiency, American machinist / Metal working manufacturing (1961) 124.
114. L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool Steels, Materials Science and Technology 7 (1991) 239-248.
115. 張裕祺,電化學加工,化工技術 1 (5) (1993) 80-83。
116. 曾國輝,化學(下冊),藝軒圖書出版社 (1995)。
117. 賀陳弘、魏水文、巴白山,電化學拋光技術,機械工業雜誌170期 (1997) 122-128。
118. 陳裕豐,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌198期 (1997) 230-240。
119. S. Magaino, M. Matlosz and D. Landolt, An Impedance Study of Stainless Steel Electropolishing, J. Electrochem. Soc. 140 (5) (1993) 1365-1372.
120. 謝逸凡,全靜不銹鋼電化學拋光表面特性研究,長庚大學碩士論文 (2002)。
121. M. Matlosz and D. Landolt, Shape Changes in Electrochemical Polishing Part I: Anodic Leveling of Ni and Fe24Cr under Mass Transport Control, J. Electrochem. Soc. 136 (1989) 919.
122. Iva Betova, Martin Bojinov and Tzvety Tzvetkoff, Role of surface reactions in the transpassive dissolution of ferrous alloys in concentrated H3PO4, Applied Surface Science 220 (2003) 273-287.
123. V.B. Singh and Archana Gupta, Active, passive and transpassive dissolution of In-718 alloy in acidic solutions, Materials Chemistry and Physics 85 (2004) 12-19.