跳到主要內容

簡易檢索 / 詳目顯示

研究生: 璩健生
Jian-Sheng Cyu
論文名稱: 低壓鑄造鋁合金輪圈之模流分析
Analysis of Mold Flow in the Low Pressure Die Casting of Aluminum Alloy Wheel
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 57
中文關鍵詞: 方向性凝固低壓鑄造氧化膜鋁合金輪圈捲氣
外文關鍵詞: aluminum alloy wheel, low pressure die casting, entrained air, oxide film, directional solidification
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前汽車鋁合金輪圈多半採用低壓鑄造方式生產,由於輪圈具有模型不透明性與幾何外型複雜的特徵,在產品開發前要掌握適當的製程參數並不容易,通常於生產完成後,觀察不適當的製程參數所產生的缺陷,憑著經驗與試誤方式,再予以調整製程參數,浪費大量時間與成本。
    本文的目的是利用電腦輔助分析的優點,在產品開發時完成適當製程參數的設定,降低試誤所浪費的時間與成本。其方式為採用真實模型案例,探討加壓速率與環境自然冷卻對低壓鑄造鋁合金輪圈的充型與凝固過程的影響,分析捲氣與凝固的情形,提出改善的加壓條件與空氣強制對流冷卻位置與持續時間、離型劑厚度與模型幾何的修正,減少氣孔與縮孔缺陷。
    結果顯示,充型過程中,若加壓速率過大,會在澆注口處形成液柱且強烈撞擊模型內壁產生大量的捲氣,並於輪轂區域產生渦流場,使得空氣滯留於輪轂區域,因此,降低加壓速率可明顯減少捲氣的發生。同時對降低的加壓速率作氧化膜分析,結果顯示此加壓速率可避免鋁液流經升液管、輪轂與肋區域的氧化膜捲入,但受到輪圈幾何外型的影響,氧化膜會殘留於胎環之中。凝固過程中,在自然環境冷卻條件下,縮孔發生於厚度變化大的區域,如胎環上緣、肋與胎環交界處以及胎環裝飾洞區域,必須在這些區域加入空氣強制對流冷卻、修正離形劑厚度與模型,增加或減少局部區域散熱量,方能達成方向性凝固,消除縮孔缺陷。


    Low pressure die casting is currently the major process used to produce automobile aluminum alloy wheels. Due to the opacity of mold and the geometric complexity of wheel, it is laborious to set up the process parameters for manufacturing the wheels. Usually it depends on working experiences and try-and-error approaches to avoid the wheel defects, which therefore wastes a lot of time and costs.
    The purpose of this study is to reduce the waste of time and costs for manufacturing aluminum wheels by the low pressure die cast process by introducing the computer-aid-engineering (CAE) to help set up appropriate process parameters. We use a real mold to discuss the influence of pressure slopes and cooling schemes on the mold filling and solidification. The defects resulting from the entrained air and shrinkage pore are reduced by adjusting the pressure rising speed, the cooling time and locations, the thickness of the mold release agent and geometry of the mold.
    Simulation results reveal that fountains forming at the sprue intensely hit the mold cavity, which produce a lot of entrained air. The resulting vortices in the hub using trap the air if the pressure rising speed is too fast. Such entrained air and trapping phenomena can be eliminated largely by reducing the pressure speed, which also can prevent oxide films residing in the riser tube, hub and spokes. When only applied is natural convection to the solidification process it is found that shrinkage occur in the top of the rim, interface of spoke and rim and the decorated pores, which are all varying a lot in thickness. For the sake of defect elimination, we add force convection at certain locations of the mold, as well as modify the thickness of mold release agent and mold, so as to achieve the directional solidification by adjusting the local heat flux.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號表 xii 第一章 緒論 ……………………………………………………… 1 1.1 前言 ………………………………………………… 1 1.2 低壓鑄造鋁合金輪圈簡介 ………………………… 2 1.2.1 低壓鑄造成形原理 ……………………………… 2 1.2.2 低壓鑄造鋁合金輪圈生產流程 ………………… 2 1.2.3 低壓鑄造鋁合金輪圈製程特徵與缺陷 ………… 2 1.2.4 鋁輪圈材質 ………………………………………… 3 1.3 文獻回顧 …………………………………………… 3 1.4 研究目的 …………………………………………… 5 第二章 模流分析理論基礎 ………………………………………… 6 2.1 模型與網格配置 ………………………………………… 6 2.2 基本假設 …………………………………………… 6 2.3 統御方程式 ………………………………………… 7 2.3.1 流場統御方程式 …………………………………. 7 2.3.2 流體體積分率方程式 …………………………… 9 2.3.3 捲氣 ……………………………………………… 10 2.3.4 氧化膜 …………………………………………… 10 2.3.5 能量方程式 ……………………………………… 11 2.4 初始條件與邊界條件 ……………………………… 12 2.4.1 初始條件 ………………………………………… 12 2.4.2 入口處邊界條件 ………………………………… 12 2.4.3 模型與鋁液介面條件 …………………………… 13 2.4.4 模型與環境空氣介面……………………………… 13 2.4.5 對稱面邊界條件 ………………………………… 13 2.4.6 自由表面處 ……………………………………… 13 2.4.7 紊流邊界層速度分布與邊界條件 ………………… 13 第三章 結果與討論 ………………………………………………… 15 3.1 充型過程之氣孔分析 ……………………………… 15 3.1.1 充型過程流動情形 ……………………………… 16 3.1.2 充型過程捲氣情形與分析 ……………………… 16 3.1.3 修改加壓條件 …………………………………… 17 3.1.4 修改加壓條件的捲氣情況與分析 ……………… 17 3.1.5 修改加壓條件的氧化膜情況與分析 …………… 18 3.2 凝固過程之縮孔分析 ……………………………… 19 3.2.1 環境自然冷卻之模型熱週期分析 ……………… 19 3.2.2 環境自然冷卻之凝固過程與縮孔分析 ………… 20 3.2.3 加入空氣強制冷卻與調整離型劑厚度之凝固過程與縮孔分析 … 22 第四章 結論與未來展望 …………………………………………… 24 4.1 結論 ………………………………………………… 24 4.2 未來展望 …………………………………………… 25 參考文……………………………………………………… 26 附表………………………………………………… 29 附圖……………………………………………………… 33

    Bangyikan, K., 2005. Effects of oxide film, fe-rich phase, porosity and their interactions on tensile properties of cast al-si-mg alloys. University of Birmingham. PhD thesis.
    Barkhudarov, M.R., 2004. Lagrangian VOF advection method for FLOW-3D. Flow Science, Inc.
    Barkhudarov, M.R., Hirt, C.W., 1995. Casting simulation: Mold filling and solidification benchmark calculations using Flow-3D. Modeling of casting, Welding, and Advanced Solidification Processes VII. 935-946
    Divandari, M., Campbell, J., 2001. Mechanisms of bubble trail formation in casting. AFS Transactions 109, 433-442.
    Duff, E.S., 1999. Fluid flow aspect of solidification modeling: simulation of low pressure die casting. The University of Queensland. Department of Mining and Metallurgical Engineering. PhD Thesis
    Flow-3D User’s Manual Version 9.2. 2007. Flow Science, Inc. Chapter 3.
    Hirt, C.W., 2003. Modeling turbulent entrainment of air at a free surface. Flow Science, Inc.
    Kreziak, G., Rigaut, C., and Santarini, M., 1993. Low pressure permanent mould process simulation of a thin wall aluminum casting. Materials Science and Engineering A 173, 255-259.
    Kuo, J.H., Hwang, W.S., 2000. Development of an interactive simulation system for die cavity filling and its application to the operation of a low-pressure casting process. Modeling and Simulation in Materials Science and Engineering 8, 583-602.
    Lee, R.J.H., 2007. Effect of cooling circuit duration on formation of solidification shrinkage in A356 casting automotive wheels. AUT University. Masters Theses of Engineering.
    Rodricuez, J.F., Bombardelli, F.A., Garcia, M.H., Frothingham, K.M., Rhoads, B., and Abad, B.L., 2004. High-resolution numerical simulation of flow through a highly sinuous river reach. Water Resources Management 18, 177-199.
    Singh, D.P.K., Mallinson, G.D., and Panton, S.M., 2002. Applications of optimization and inverse modeling to alloy wheel casting. Numerical Heat Transfer Part A: Applications 41, 741-756.
    Versteeg, H.K., Malalasekera, W., 2007. An introduction to computational fluid dynamics. Pearson Education. England. Chapter 3, pp. 75-88.
    Wang, Y.C., Li, D.Y., Peng, Y.H., and Zeng, X.Q., 2007. Numerical simulation of low pressure die casting of magnesium wheel. The International Journal of Advanced Manufacturing Technology 32, 257-264.
    Yang, X., Huang, X., Dai, X., Campbell, J., Tatler, J., 2004. Numerical modeling of the entrainment of oxide film defects in filling of aluminum alloy castings. International Journal of Cast Metals Research 17, 321-331.
    Yoshimura, T., Yano, K., Fukui, T., Yamamoto, S., Nishido, S., Watanabe, M. and Nemoto, Y., 2008. Optimum design of die casting plunger tip considering air entrainment. Proceedings of 10th Asian Foundry Congress. Nagoya, Japan. 21-24.
    Zhang, B., Maijer, D.M., and Cockcroft, S.L., 2007. Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Materials Science and Engineering A 464, 295-305.
    Zhao, H., Ohnaka, I., Sako, Y., Onda, H., Zhu, J., and Yasuda, H., 2002. Estimation of porosity defects with consideration of oxide entrapment. Proceedings of the 65th world foundry congress. 749-754
    Zhu, J.D., Cockcroft, S.L., and Maijer, D.M., 2006. Mpdeling of microporosity formation in A356 aluminum alloy casting. Materials Science and Engineering A 37, 1075-1085.
    于彥東,王建榮,蔣海燕,付彭懷,翟春泉,丁文江,羅愛華,劉新寬,2005,鎂合金低壓鑄造充型和凝固過程數值模擬,熱加工工藝,第10期,29-31。
    余家杰,2003,鋁合金輪圈鑄造模擬分析,元智大學機械工程所碩士論文。
    邱垂泓,楊志超,2001,鎂合金成型技術之發展趨勢,工業材料雜誌,174期,84-88。
    徐宏,褚忠,侯華,粱紅玉,2002,低壓鑄造工藝充型模擬優化技術,汽車工藝與材料,10期,12-16。
    黃敬洲,楊銘倫,2008,ARTC輕合金輪圈檢測、分析與改良第一把交椅,車輛研測資訊,第65期,26-30。
    趙玉濤,張子才,夏越璋,潘增源,粱星才,尤炳良,蔣康毅,2004,鋁合金車輪製造技術,機械工業出版社,北京,第1章,第3-4頁,第5章,第82-92頁。
    聞星火,童本行,柳百成,王孝東,王培云,何丙軍,1996,低壓鑄造鋁合金輪轂模具溫度場的測試,特種鑄造及有色合金,第4期,29-32。
    劉明凌,2004,鋁合金壓鑄輪圈之流動系統設計及分析研究,中央大學機械研究所,碩士論文。
    賴耿陽,1998,特殊鑄造技術,復漢出版社有限公司,台南,第2章,第121-143頁。

    QR CODE
    :::