跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴律臻
Lyu-Jhen Lai
論文名稱: 差動式疊紋自動對焦系統
Auto focus system based on differential technique and moire method
指導教授: 李朱育
Ju-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 自動對焦疊紋差動訊號
外文關鍵詞: differential signal, moire, auto focus
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一套新的自動對焦系統-「差動式疊紋對焦系統」,其利用兩個線性光柵配合顯微鏡架構,來分析待測物的位置變化時反應至偵測面上的成像大小,並依據疊紋光形的變化情形,來判斷待測物的位置。本論文之發明,可提供面板產業所使用的自動光學檢測機(automatic optical inspection, AOI)以及雷射修補機(laser repair, LR)所需的自動對焦問題,以此為基礎,提供一個穩定、簡易、且高解析度的自動對焦系統。
    我們依據光學成像和疊紋效應原理,配合顯微鏡架構,開發出一套可觀測與自動對焦的系統。本論文的研究方法如下:以一準直光源通過第一道光柵,經物鏡聚焦於待測物上,再由待測物之表面反射回到光路系統後,經目鏡成像於第二道光柵上;疊紋是由兩組或兩組以上間距相近的光柵所交疊形成的低頻條紋,當成像大小不變(放大或縮小)時,將可觀測到斜率為0(正或負)的線性疊紋。如此可藉由疊紋光形變化,搭配疊紋判讀技術與迴路控制演算法,來判斷待測物離焦程度使之自動化對焦。
    根據實驗結果,本系統在光柵間距0.1mm時,其靈敏度為1.6*10-2(um-1),光柵間距0.2mm時,其靈敏度為1.3*10-2(um-1)。因此使用者可在固定物鏡的規格下,擁有彈性的量測能力。在優化靈敏度的設定中,我們可藉由偵測位置的選定,以提升系統的靈敏度;調整兩光柵間夾角,使系統具有判斷離焦方向的能力。
    將優化條件設定於不同的物鏡系統,根據其實驗結果,本系統在低倍物鏡下,工作距離最長可達200 um,其精度為5 um;在高倍物鏡下工作距離最長為15 um,其精度可達0.2 um。由此可知,使用者可依據不同的使用需求,選擇需要的規格,達到對焦的目的。
    本系統利用疊紋效應原理,以及偵測光強差動訊號的方式,可達到較為精密的對焦。更進一步,配合新式的演算法,使得非同調光源系統的對焦穩定性提升,以達到高解析度、穩定、且簡易的對焦系統。


    In this thesis, a novel auto-focus system based on a differential technique and the moiré method is presented. Two linear gratings and the structure of the microscope are used for detection of the sample’s defocus situation. The system basically solves the auto-focusing problems in the AOI (Automatic Optical Inspection) and LR (Laser Repair), and is a simple, cheap, and useful to apply.
    The system is based on optical images, the moiré effect principle and the architecture of the microscope, and is able to shows the image and auto-focus at the same time. The moiré fringe is formed from two similar gratings with the lower frequency. If the size of the projected image size is the same as the (bigger or smaller) grating, a horizontal linear moiré pattern (having a positive or negative angle) is detected along the horizon line. We can determine whether the sample is located on focus or not from the detected moiré patterns. Finally, we combine the moiré detection system with P control and a feedback algorithm.
    The simulation and experimental results show our system to have a higher sensitivity with a smaller grating period and a higher magnification objective lens. We also provide advanced setting function to improve the system’s sensitivity by choosing the exact detected pixels on a Linear CCD. The features distinguish between in focus or far focus by rotating the gratings. All the advanced choices are set for objective lenses with different magnifications. The experimental results show that we can obtain an accuracy of about 0.2 um with a 50X objective lens, or a long detection range of about 200 um with a 10X objective lens.
    Our system has a high resolution and simple structure, which is based on the moiré technique, the differential signal, and a novel feedback algorithm. It has the ability to enhance stability with a non-coherent light source focusing system.

    摘要 i Abstract ii 致謝 iii 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 自動對焦文獻回顧 2 1.2.2 疊紋效應文獻回顧 14 1.3 研究目的 17 1.4 論文架構 18 第二章 基礎理論 19 2.1 用於自動對焦技術中的測距法 19 2.1.1 三角測距法 19 2.1.2 干涉測距法 20 2.1.3 脈衝雷射測距法 21 2.2 疊紋量測技術 22 2.2.1 疊紋效應 22 2.2.2 疊紋位移理論 23 2.2.3 疊紋旋轉理論 25 2.3 光柵投影成像大小引入疊紋變化 26 2.4 光線追跡理論 28 2.5 小結 31 第三章 系統架構 32 3.1 元件介紹 32 3.2 光強式疊紋自動對焦系統 34 3.2.1 照明系統 34 3.2.2 對焦系統 35 3.2.3 疊紋系統 39 3.3 疊紋判斷與P迴路控制系統 39 3.3.1 光強式差動訊號 39 3.3.2 判讀離焦距離 42 3.3.3 自動對焦流程 43 第四章 實驗結果與討論 45 4.1 實驗架構模擬 45 4.1.1 建立架構 45 4.1.2 設定自製光欄 47 4.1.3 模擬離焦情形 47 4.1.4 模擬光柵參數 52 4.1.5 優化系統靈敏度 53 4.2 實驗數據 55 4.2.1 不同光柵參數 55 4.2.2 不同物鏡 60 4.3 功能驗証 68 4.3.1 量測的正確性 68 4.3.2 自動對焦測試 70 4.4 實驗討論 72 4.4.1 不同偵測間距 72 4.4.2 不同透鏡對焦能力 72 4.4.2 疊紋亮暗對比度的影響 74 第五章 誤差分析 76 5.1 入射光偏折誤差 76 5.2 待測物傾斜誤差 78 5.3 光源的不穩定性 79 5.4 溫度與環境干擾 80 5.5 小結 81 第六章 結論與未來展望 82 參考文獻 83 附錄A 85

    [1]. 中華民國自動化科技學會,「光機電整合」,自動化09,2007。
    [2]. K. C. Fan and C. Hsu, “Strategic planning of developing automatic optical inspection (AOI) technologies in Taiwan,” Journal of Physics, Conference Series 13, pp.394-397, 2005.
    [3]. H. Cho, Opto-mechatronic Systems Handbook, CRC Press, Boca Raton, 2003.
    [4]. 曾定章和丘前恕 ,「顯微照像快速自動對焦技術」,機械月刊08,2008。
    [5]. P. J. Chen et al., “Development of an auto-focus microscope system by using astigmatism method,” Instruments Today, Vol. 29, No. 4, pp.50-58, 2008.
    [6]. E. Jacobs, “Auto-focus cameras,” Popular Science, Vol. 217, No. 6, pp.96-99, 1980.
    [7]. A. Erteza, “Sharpness index and its application to focus control,” Applied Optics, Vol. 15, No. 4, pp.877-881, 1976.
    [8]. W. Y. Hsu et al., “Development of the fast astigmatic auto-focus microscope system,” Measurement Science and Technology, Vol. 20, No. 4, Art. No. 045902, 2009.
    [9]. 王義閔,「共焦顯微鏡雜記」,物理雙月刊23卷2期,2001。
    [10]. Adam Weiss, Tracking auto focus system. U.S. Patent.No.0202103 A1, 2006.
    [11]. 自動對焦系統,日本中央精機株式會社。
    [12]. 何展効,「Mirau干涉術應用於超音波量測研究」,中華民國音響學會十七屆學術研討會論文集,2004。
    [13]. S. J. Liao et al., “A new method for measuring a small displacement by using the critical angle method and confocal technology,” SPIE, Vol. 5635, 2005.
    [14]. 馮漢民,「簡易型角度偏向顯微儀之研究」,台灣光電科技研討會,2006。
    [15]. Marvin Minsky, Microscopy Apparatus. U.S. Patent.No. 3,013,467.
    [16]. 梁翠萍等編著,「簡析光學系統自動對焦的方法」,電光與控制13卷6期,93-96頁,2006。
    [17]. N. Baba et al., “An auto-tuning method for focusing and astigmatism correction in HAADF-STEM, based on the image contrast transfer function,” Journal of Electron Microscopy, Vol. 50, No. 3, pp.163-176, 2001.
    [18]. E. Jacobs, “Auto-focus cameras,” Popular Science, Vol. 217, No. 6, pp.96-99, 1980.
    [19]. H. Takasaki, “Moire topography,” Applied Optics, Vol. 9, No. 6, pp.1467-1472, 1970.
    [20]. J. Krasinski et al., “Phase object microscopy using moire deflectometry,” Applied Optics, Vol. 24, No. 18, pp.3032-3036, 1985.
    [21]. A. J. Durelli and V. J. Parks, Moire Analysis of Strain, Prentice Hall, Englewood Cliffs, New Jersey, 1970.
    [22]. P. S. Theocaris, Moire Fringe in Stress Analysis, Pergamon, London, 1969.
    [23]. O. Kafri and I. Glatt, “High sensitivity reflection-transmission moire deflectometer,” Applied Optics, Vol. 27, No. 2, pp.351-355, 1988.
    [24]. I. Glatt and A. Livnat, “Determination of the refractive index of a lens using moire deflectometry,” Applied Optics, Vol. 23, No. 14, pp.2241-2243, 1984.
    [25]. E. Keren et al., “Universal method for determining the focal length of optical systems by moire deflectometry,” Applied Optics, Vol. 27, No. 8, pp. 1383-1385, 1988.
    [26]. C. W. Chang and D. C. Su, “Collimation method that uses spiral gratings and talbot interferometry,” Optics Letters, Vol. 16, No. 22, pp.1783-1784, 1991.
    [27]. R. D. Torroba et al., “Object positioning by a digital moiré focusing technique,” Optical Engineering, Vol. 38, No. 8, pp.1409-1412, 1999.
    [28]. S. Rana et al., “Automated collimation testing in Lau interferometry using phase shifting technique,” Optics and Lasers in Engineering, Vol. 47, No. 6, pp.656-661, 2009.
    [29]. S. Prakash et al., “Setting sensitivity in collimation testing using Lau interometry,” Journal Of Optics, Vol. 8, No.3, pp. 290-294, 2006.
    [30]. C. S. Liu et al., “Novel fast laser-based auto-focusing microscope,” IEEE Sensors Conference, 2010.
    [31]. H. H. Liao and Y. J. Yang, “A microelectromechanical digital-to-analog converter as the step-motion reference mirror for a white-light interferometry system," IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2010.
    [32]. O. Kafri and I. Glatt, The physics of moiré metrology, New York, Wiley, 1990.
    [33]. 現代幾何光學,凡異出版社,新竹市,1988。
    [34]. M. Abramowitz et al.: Kohler Microscope Illumunation. April 15, 1999. From http://micro.magnet.fsu.edu/primer/anatomy/kohler.html.
    [35]. 林佑儒,「疊紋自動對焦技術」,國立中央大學,碩士論文,2010。
    [36]. Emin Gabrielyam, “The basic of line moiré patterns and optical speedup,” Switzernet Sarl, Scitznet Sarl, Scientific Park of Swiss Federal Institute of Technology, Lausanne(EPFL).
    [37]. J. Dhanotia and S. Prakash, “Collimation testing using wedge plate lateral shearing interferometry and fourier fringe analysis,” Optics and Lasers in Engineering, Vol.49, No.8, pp.1025-1031, 2011.
    [38]. 趙凱華、鍾錫華,光學,格致圖書公司,台北市,1992。
    [39]. 段守胜等編著,「SEM 自動聚焦系統設計」,現代科學儀器四期,2009。
    [40]. H. H. Liao, “A microelectromechanical digital-to-analog converter as the step-motion reference mirror for A white-light interferometry system,” IEEE international Conference on NEMS, 2010.

    QR CODE
    :::