跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林英杰
Ying-Chieh Lin
論文名稱: 帶變量核之奇異積分算子
Singular Integral Operators with Variable Kernels
指導教授: 林欽誠
Chin-Cheng Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 96
語文別: 英文
論文頁數: 71
中文關鍵詞: 變量核奇異積分算子
外文關鍵詞: variable kernels, singular integral operators
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇文章的主要目的是討論變量核奇異積分算子的加權有界性。在文章的開頭我們簡單的介紹這個理論的發展,並點出我們研究這個主題的動機。在第二章中,我們介紹 $A_p$ 權及加權哈弟空間的定義,並整理出一些性質,這些性質在我們證明的過程中是不可或缺的。
    我們將變量核的條件分成兩類。第一類是考慮在核的兩個變量上都給平滑條件,而第二類是考慮將核的平滑條件都集中在第二個變量上。第三章就是討論奇異積分算子在第一類核條件下的 $L^p_w$ 及 $H^p_w-L^p_w$ 有界性。
    第二類核的條件在第二個變量上給了很高的平滑性,這類條件和擬微分算子的關係非常密切。在第四章中,我們使用球調和函數理論去證明變量核奇異積分的 $L^p_w$, $H^p_w-L^p_w$, 和 $h^p_w$ 有界性,其中 $h^p_w$ 代表局部哈弟空間。
    第五章考慮一類向量型式的奇異積分算子,我們稱之為帶變量核的分數次 Marcinkiewicz 積分。在一個粗糙核的條件下,我們得到這類算子的 $L^p-L^2$ ($1<p<2$) 有界性。另外,在某種 Dini 型態條件下,得到 $H^p-L^q$ ($ple 1$) 有界性。最後,利用插值定理得到分數次 Marcinkiewicz 積分的 $L^p-L^q$ ($1<p<2$) 有界性。


    The main purpose of this thesis is to investigate the weighted boundedness of the singular integral operators with variable kernels. First, we introduce the history of this theory. In Chapter 2, we recall the definitions of $A_p$ weights and the weighted Hardy spaces together with their properties.
    Next, we separate the smoothness of the variable kernel into two categories. The first is the class of kernels with smoothness in both variables. We adopt Kurtz-Wheeden''s method for our estimates to get the $L^p_w$ boundedness of the singular integral operators with kernels in this category. In additional, we also consider the $H^p_w-L^p_w$ boundedness of the operators. These results are given in Chapter 3.
    The second category is the class of kernels with smoothness in the variable only, which will be discussed in Chapter 4. This category is closely related to the pseudo-differential operators and more appropriate for the work of elliptic differential operators. We use spherical harmonics to decomposition the kernels and obtain the $L^p_w$, $H^p_w-L^p_w$, and $h^p_w$ boundedness of the operators in this category, where $h^p_w$ denotes the local Hardy space introduced by Goldberg and Bui.
    Finally, we consider a vector-valued version of the singular integral operators, which are called the fractional Marcinkiewicz integrals $mu_{Omega,alpha}$ with variable kernels. Under a rough kernel condition,
    we get the $L^p-L^2$ ($1<p<2$) boundedness of $mu_{Omega,alpha}$. Then we show that, if the kernel $Omega$
    satisfies a class of Dini condition, $mu_{Omega,alpha}$ is boundedness from $H^p$ ($ple 1$) to $L^q$. As a corollary of the above results, we obtain the $L^p-L^q$ ($1<p<2$) boundedness of the fractional Marcinkiewicz
    integrals.

    Chapter 1. Introduction 1 Chapter 2. Preliminaries 6 §1. $A_p$ weights$......................................6 §2. Weighted Hardy spaces...............................8 Chapter 3. Kernels with smoothness in both variables 11 §1. Watson''s result and Kurtz-Wheeden''s method.........11 §2. $L^p_w$ boundedness................................13 §3. $H^p_w-L^p_w$ boundedness..........................16 §4. Kernels with Lipschitz continuous..................26 Chapter 4. Kernels with smoothness in one variable 29 §1. $L^p_w$ boundedness................................30 §2. $H^p_w-L^p_w$ boundedness..........................34 §3. $h^p_w$ boundedness................................36 Chapter 5. Marcinkiewicz integrals with variable kernels 45 §1. Proof of Theorem 5.0.1.............................48 §2. Proof of Theorem 5.0.2.............................54 §3. For the case of $Bbb R^2$.........................60 References 65

    [AH] N. E. Aguilera and E. O. Harboure, Some inequalities for maximal operators, Indiana Univ. Math. J. 29 (1980), 559-576.
    [B] Bownik, Boundedness of operators on Hardy spaces via atomic decomposition, Proc. Amer. Math. Soc. 133 (2005), 3535-3542.
    [Bu] H.-Q. Bui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45-62.
    [BCP] A. Benedek, A. Calder´on, and R. Ranzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. USA 48 (1962), 356-365.
    [CF] R. Coifman and C. Fefferman, Weighted norm inequalities form maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
    [CoF] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101.
    [CZ1] A. P. Calder´on and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
    [CZ2] A. P. Calder´on and A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc. 78 (1955), 209-224.
    [CZ3] A. P. Calder´on and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
    [CZ4] A. P. Calder´on and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921.
    [CZ5] A. P. Calder´on and A. Zygmund, On singular integral with variable kernels, Appl. Anal. 7 (1978), 221-238.
    [DCF] Y. Ding, J. Chen, and D. Fan, A class of integral operators with variable kernels on Hardy space, Chinese Ann. Math. Ser. A 23 (2002), 289-296.
    [DLL] Y. Ding, M.-Y. Lee, and Y.-C. Lin, Marcinkiewicz integral on weighted Hardy spaces, Arch. Math. 80 (2003), 620-629.
    [DLS] Y. Ding, C.-C. Lin, and S. Shao, On the Marcinkiewicz integral with variable kernels, Indiana. Univ. Math. J. 53 (2004), 805-821.
    [F] R. Fefferman, A note on the singular integral, Proc. Amer. Math. Soc. 74 (1979), 266-270.
    [FR] E. B. Fabes and N. M. Rivi`eve, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38.
    [G] J. Garcia-Cuerva, Weighted $H^p$ spaces, Dissertations Math. 162 (1979), 1-63.
    [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
    [GR] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, 1985.
    [GW] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math. 49
    (1974), 107-124.
    [H] L. H¨ormander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math. 104 (1960), 93-140.
    [HLL] Y. Han, M.-Y. Lee, and C.-C. Lin, Atomic decomposition and boundedness of operators on weighted Hardy spaces, preprint.
    [HMW] R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and the Hilbert transform, Trans. Amer. Math. Soc. 176 (1973),
    227-251.
    [J] K. Jichang, On weighted $H^p$ boundedness of C-Z type singular integral operators, J. Math. Anal. Appl. 197 (1996), 864-874.
    [K] J. C. Kuang, On $H^p$ boundedness of singular integral operators, Acta Sci. Natl. Univ. Norm. Hunan 15 (1992), 106-109.
    [KW] D. Kurtz and R. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362.
    [LeL] M.-Y. Lee and C.-C. Lin, The molecular characterization of weighted Hardy spaces, J. Funct. Anal. 188 (2002), 442-460.
    [LeL2] M.-Y. Lee and C.-C. Lin, Weighted $L^p$ boundedness of Marcinkiewicz integral, Integr. Equ. Oper. Theory 49(2004), 211-220.
    [LL] C.-C. Lin and Y.-C. Lin, $H^p_w−L^p_w$ boundedness of Marcinkiewicz integral, Integr. Equ. Oper. Theory 58 (2007), 87-98.
    [LLLY] M.-Y. Lee, C.-C. Lin, Y.-C. Lin, and D. Yan, Boundedness of singular integral operators with variable kernels, preprint.
    [M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
    [Ma] J. Marcinkiewicz, Sur quelques integrales de type de Dini, Annales de la Soci´et´e Polonaise 17 (1938), 42-50.
    [N] J. Namani, $L^∞-BMO$ boundedness for a singular integral operator, Proc. Amer. Math. Soc. 108 (1990), 465-470.
    [R] M. Rosenblum, Summability of Fourier series in Lp(μ), Trans. Amer. Math. Soc. 105 (1962), 32-42.
    [S] E. M. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466.
    [SW] E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172.
    [SW2] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
    [SWh] J.-O. Str¨omberg and R. L. Wheeden, Fractional integrals on weighted $H^p$ and $L^p$ spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321.
    [SY] M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), 103-142.
    [W] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-399.
    [Z] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.

    QR CODE
    :::