跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳羽珮
Yu-pei Wu
論文名稱: 利用同位衍生/萃取結合微波輔助頂空固相微萃取法檢測水樣中的烷基酚類化合物
One-step in situ derivatization/extraction coupled with microwave- assisted HS-SPME to detect alkylphenols in aqueous samples
指導教授: 丁望賢
Wang-hsien Ding
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 烷基酚類化合物微波輔助同位衍生頂空固相微萃取法
外文關鍵詞: HS-SPME, microwave- assisted, in situ derivatization, alkylphenols
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 烷基酚(alkylphenols)為烷基酚聚乙氧基醇類(alkylphenol polyethoxylates,簡稱APnEOs)非離子型界面活性劑在環境中所降解的產物,已被證實會干擾生物體的內分泌機制,被稱之為環境荷爾蒙(environmental hormones)。此類化學物質近年來引起了大眾的關注,故有必要發展一套既快速又便利的方法檢測環境中的烷基酚類化合物。
      在本篇研究中,利用一步完成的微波輔助固相微萃取法(Microwave-Assisted Headspace Solid-Phase Microextraction,簡稱MA-HS-SPME)搭配同位衍生(in situ derivatization)的方式來當作樣品的前處理步驟,再結合氣相層析質譜儀(GC-MS)來偵測水樣中的烷基酚類化合物。取20 mL水樣置於40 mL的棕色瓶中,添加1 g的KHCO3 、300 μL的衍生試劑acetic anhydride及2 g的NaCl,使用65 μm PDMS/DVB的纖維於80 W加熱並萃取5分鐘。偵測極限範圍在2及30 ng/L之間,定量極限範圍在5及50 ng/L之間。
      在環境水樣中,4-t-OP與4-NPs以標準添加法定量的結果分別介於142.9至579.8 ng/L和124.8至933.8 ng/L之間,回歸係數高於0.9669。本研究開發的微波輔助頂空固相微萃取法搭配同位衍生,結合氣相層析質譜儀,是具有快速檢測、步驟簡便及穩定性佳的方法,克服傳統萃取法中耗時且需使用大量有機溶劑的缺點,可用來偵測水樣中的烷基酚類化合物。


    4-tert-octylphenol (4-t-OP) and 4-nonylphenol isomers (4-NPs) are two persistent degradation products from widely used nonionic surfactants alkylphenol polyethoxylates (APEOs). They have been demonstrated to exhibit the ability to mimic natural hormones. The large-scale usage of surfactants and increasing public concern over environmental issues has stimulated our interest to investigate their occurrence and behavior in the environment.
    The present study described a rapid and solvent-free procedure for the determination of 4-t-OP and 4-NPs in water samples by one-step in situ acetylated coupled with microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) prior to their determination using gas chromatography-mass spectrometry (GC-MS). The effects of various derivatization and extraction parameters were systematically investigated and optimized. Under optimized conditions, 300 μL of acetic anhydride mixed with 1 g of KHCO3 and 2 g of NaCl in a 20-mL water sample (in a 40-mL sample-bottle) were efficiently extracted by a 65 μm polydimethylsiloxane -divinylbenzene (PDMS-DVB) fiber placed in the headspace when the system was microwave irradiated at 80 W for 5 min. The limits of quantification (LOQs) were 5 and 50 ng/L for 4-t-OP and 4-NPs, respectively. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than12.9 % for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 49.9 – 81.8 % and 27.7 – 63.2 % for 4-t-OP and 4-NPs, respectively. A standard addition method was used to quantitate 4-t-OP and 4-NPs, and the concentrations ranged from 142.9 to 579.8 ng/L and 124.8 to 933.8 ng/L for 4-t-OP and 4-NPs, respectively in various environmental samples. This in situ acetylated MA-HS-SPME appears to be a good alternative extraction method for the determination of 4-t-OP and 4-NPs in environmental samples; it is a simple, effective, low-cost, and eco-friendly analytical method.

    目錄 中文摘要 I 英文摘要 II 謝誌 IV 目錄 V 圖目錄 IX 表目錄 XI 第一章 前言 1 1-1 研究緣起 1 1-2 研究目標 4 第二章 文獻回顧 5 2-1 環境荷爾蒙 5 2-1-1 何謂環境荷爾蒙 5 2-1-2 環境荷爾蒙的作用機制 6 2-1-3 烷基酚類化合物 7 2-1-4 烷基酚類化合物毒性 10 2-1-5 環境中烷基酚類化合物的含量 17 2-1-6 人體暴露之風險評估 18 2-1-7 相關研究文獻 21 2-2 微波 23 2-2-1 微波簡介 23 2-2-2 加熱原理 24 2-2-3 微波裝置 26 2-2-4 相關應用 28 2-3 固相微萃取法 30 2-4 衍生化技術 36 2-4-1 乙醯化衍生法 36 2-5 氣相層析質譜儀 38 2-5-1 離子阱質譜儀 41 2-6 標準添加法 42 第三章 實驗步驟與樣品分析 44 3-1 實驗藥品與設備 44 3-1-1 實驗藥品 44 3-1-2 儀器設備 45 3-2 實驗步驟 46 3-2-1 標準品的配製 46 3-2-2 氣相層析質譜儀的參數設定 46 3-2-3 MA-HS-SPME裝置 48 3-2-4 操作流程 48 3-3 水樣採集 50 3-4 真實樣品檢測定量 51 第四章 結果與討論 52 4-1 氣相層析質譜儀對烷基酚類化合物的測定 52 4-1-1 烷基酚類化合物的分析 52 4-1-2 儀器的偵測極限 52 4-2 乙醯化衍生條件的最佳化 57 4-3 微波輔助萃取條件最佳化 59 4-4 固相微萃取法的條件最佳化 62 4-4-1 萃取纖維的種類 62 4-4-2 熱脫附溫度 63 4-4-3 熱脫附時間 65 4-4-4 NaCl添加量 66 4-5 微波輔助頂空固相微萃取法搭配乙醯化衍生的最佳化結果 68 4-6 微波輔助頂空固相微萃取法搭配乙醯化衍生之檢量線 69 4-7 真實水樣定量 71 第五章 結論與建議 78 5-1 結論 78 5-2 建議 78 第六章 參考文獻 79 附錄 86 圖目錄 圖1-1. 雌激素與壬基酚化合物的結構 3 圖2-1. 環境荷爾蒙與天然荷爾蒙的關係圖 7 圖2-2. 烷基酚聚乙氧基醇類非離子型界面活性劑之結構 9 圖2-3. 烷基酚類化合物的結構 10 圖2-4. 烷基酚聚乙氧基醇類於環境中降解的途徑 11 圖2-5. 一般電磁波頻率範圍示意圖 24 圖2-6. 微波加熱原理示意圖 27 圖2-7. 微波加熱與傳統加熱法的比較示意圖 28 圖2-8. 固相微萃取裝置圖 31 圖2-9. 固相微萃取法的操作過程 32 圖2-10. 固相微萃取塗覆固定相的種類與性質 34 圖2-11. 乙醯化衍生反應 37 圖2-12. 氣相層析儀構造圖 39 圖2-13. 質譜儀構造圖 39 圖2-14. 離子阱結構圖 41 圖2-15. 標準添加法操作圖 43 圖2-16. 標準添加法檢量線 43 圖3-1. MA-HS-SPME裝置圖 48 圖4-1. 烷基酚類化合物的質譜圖 53 圖4-2. 衍生前後的汲取質量層析圖 54 圖4-3. 衍生前後的效果比較 55 圖4-4. 烷基酚類化合物的汲取質量層析圖 56 圖4-5. 乙醯化衍生條件對萃取量的影響 58 圖4-6. 加熱瓦數與萃取時間對萃取量的影響 61 圖4-7. 萃取纖維對萃取量的影響 63 圖4-8. 脫附溫度對脫附量的影響 64 圖4-9. 脫附時間對脫附量的影響 66 圖4-10. NaCl添加量對萃取量的影響 67 圖4-11. 微波輔助頂空固相微萃取法搭配乙醯化衍生之檢量線 70 圖4-12. 竹科放流口的汲取質量層析圖 72 圖4-13. 老街溪的汲取質量層析圖 73 圖4-14. 百花川上游的汲取質量層析圖 73 圖4-15. 百花川中游的汲取質量層析圖 74 圖4-16. 百花川下游的汲取質量層析圖 74   表目錄 表2-1. 烷基酚類化合物的相關性質 9 表2-2. 烷基酚類化合物在水生生物的BCF值(WET WEIGHT) 14 表2-3. 壬基酚的急毒性表 15 表2-4. 辛基酚的急毒性與慢毒性表 16 表2-5. 各國廢汙水廠放流水之烷基酚濃度 17 表2-6. 各國河水之烷基酚濃度 18 表2-7. 液態樣品的萃取方法 22 表3-1. 整合離子層析模式下定量離子 47 表4-1. 烷基酚類化合物之儀器偵測極限與線性關係 56 表4-2. KHCO3與ACETIC ANHYDRIDE之衍生條件 58 表4-3. 加熱瓦數與時間之萃取條件 60 表4-4. 烷基酚類化合物的偵測極限與線性關係 70 表4-5. 環境樣品的電導度值 72 表4-6. 標準添加法所得的線性關係 75 表4-7. 方法的穩定性與再現性 76 表4-8. 本實驗方法與其他文獻的比較 77

    1 王正雄、張小萍、李宜樺、黃壬瑰、陳佩珊、洪文宗:台灣地區擬似環境荷爾蒙物質管理及環境流布調查,微生物與環境荷爾蒙研討會論文集,第1-29頁,民國89年。
    2 王正雄:環境荷爾蒙--地球村 二十一世紀之熱門課題,科學知識,第51期,第18-23頁,民國89年。
    3 李茂榮、陳崇宇:微波萃取技術之應用,科儀新知,第25卷,第2期,民國92年。
    4 李茂榮、陳崇宇、李祖光:固相微萃取技術於微量分析之應用,化學,第63卷,第3期,民國94年。
    5 林天送:環境荷爾蒙--從限用塑膠袋說起,科學發展月刊,第370期,第54-59頁,民國92年。
    6 林維雋:以一維及二維氣相層析質譜儀檢測生物檢體中烷基酚之分析與研究,碩士論文,國立中央大學化學研究所,民國96年。
    7 施純榮:由產業特性與趨勢看我國的界面活性劑工業,化工技術,第5期,第112頁,民國86年。
    8 陳美蓮、毛義方、呂育諭、張基昌、洪正修、陳志堯、宋鴻樟、王錫崗:壬基酚類國人暴露及其健康效應,台灣醫學,第14卷,第2期,民國99年。
    9 曾新華、丁望賢:離子阱質譜儀,儀器總覽-化學分析儀器,民國87年。
    10 Auriol, M.; Filalimeknassi, Y.; Tyagi, R.; Adams, C.; Surampalli, R., Endocrine disrupting compounds removal from wastewater, a new challenge, Process Biochem., 2006, 41, 525-539.
    11 Bianco, M.; Mita, L.; Portaccio, M.; Diano, N.; Sica, V.; De Luca, B.; Mita, D.G.; Carratelli, C.R.; Viggiano, E., Differential accumulation levels in the brain of rats exposed to the endocrine disruptor 4-tert-octylphenol (OP), Environ. Toxicol. Pharmacol., 2011, 31, 198-204.
    12 Chen, G.-W.; Ding, W.-H.; Ku, H.-Y.; Chao, H.-R.; Chen, H.-Y.; Huang, M.-C.; Wang, S.-L., Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food and Chemical Toxicology, 2010, 48, 1939-1944.
    13 Diaz, A.; Ventura, F., Simultaneous Determination of Estrogenic Short Ethoxy Chain Nonylphenols and Their Acidic Metabolites in Water by an In-Sample Derivatization/Solid-Phase Microextraction Method, Anal. Chem., 2002, 74, 3869-3876.
    14 Ferrara, F.; Ademollo, N.; Orru, M.A.; Silvestroni, L.; Funari, E., Alkylphenols in adipose tissues of Italian population, Chemosphere, 2011, 82, 1044-1049.
    15 Gong, Y.; Wu, J.; Huang, Y.; Shen, S.; Han, X., Nonylphenol induces apoptosis in rat testicular Sertoli cells via endoplasmic reticulum stress, Toxicol. Lett., 2009, 186, 84-95.
    16 Harris, D.C., Quantitative chemical analysis, 6th ed., W.H. Freeman and Company, 2002.
    17 Hong, L.; Li, M.H., Acute Toxicity of 4-Nonylphenol to Aquatic Invertebrates in Taiwan, Bull. Environ. Contam. Toxicol., 2007, 78, 445-449.
    18 Hagiwara, H.; Sugizaki, T.; Tsukamoto, Y.; Senoh, E.; Goto, T.; Ishihara, Y., Effects of alkylphenols on bone metabolism in vivo and in vitro, Toxicol. Lett., 2008, 181, 13-18.
    19 Jobling, S.; Sumpter, J.P., Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study suing rainbow trout (Oncorhynchus mykiss) hepatocytes, Aquat Toxicol, 1993, 27, 361-372.
    20 Kingston, H.M.; Jassie, L.B., Introduction to microwave sample preparation: Theory and practice, American Chemical Society, 1988, 7-31.
    21 Kataoka, H.; Lord, H.L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis, J. Chromatogr. A, 2000, 880, 35-62.
    22 Lee, H.; Peart, T.; Svoboda, M., Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry, J. Chromatogr. A, 2005, 1094, 122-129.
    23 Lu, Y.-Y.; Chen, M.-L.; Sung, F.-C.; Paulus Shyi-Gang, W.; Mao, I.F., Daily intake of 4-nonylphenol in Taiwanese, Environ. Int., 2007, 33, 903-910.
    24 Lopez-Espinosa, M.J.; Freire, C.; Arrebola, J.P.; Navea, N.; Taoufiki, J.; Fernandez, M.F.; Ballesteros, O.; Prada, R.; Olea, N., Nonylphenol and octylphenol in adipose tissue of women in Southern Spain, Chemosphere, 2009, 76, 847-852.
    25 Luo, S.; Fang, L.; Wang, X.; Liu, H.; Ouyang, G.; Lan, C.; Luan, T., Determination of octylphenol and nonylphenol in aqueous sample using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry, J. Chromatogr. A, 2010, 1217, 6762-6768.
    26 Müller, S.; Schmid, P.; Schlatter, C., Pharmacokinetic behavior of 4-nonylphenol in humans, Environ. Toxicol. Pharmacol., 1998, 6, 27-33.
    27 Müller, S.; Schmid, P.; Schlatter, C., Evaluation of the estrogenic potency of nonylphenol in non-occupationally exposed humans, Environ. Toxicol. Pharmacol., 1998b, 6, 27-33.
    28 Markey, C.M.; Michaelson, C.L.; Sonnenschein, C.; Soto, A.M., Alkylphenols and Bisphenol A as Environmental Estrogens, The Handbook of Environmental Chemistry, 2001, 3, 131-153.
    29 Martínez-Uruñuela, A.; González-Sáiz, J.M.; Pizarro, C., Optimisation of the derivatisation reaction and subsequent headspace solid-phase microextraction method for the direct determination of chlorophenols in red wine, J. Chromatogr. A, 2004, 1048, 141-151.
    30 Pawliszyn, J., New direction in sample preparation for analysis of organic compounds, Trends Anal. Chem., 1995, 14, 113-122.
    31 Petrovic, M.; Radjenovic, J.; Postigo, C.; Kuster, M.; Farre, M.; Alda, M.L.; Barceló, D., Emerging Contaminants in Waste Waters: Sources and Occurrence, The Handbook of Environmental Chemistry, 2008, 5S/1, 1-35.
    32 Pan, Y.; Tsai, S., Solid phase microextraction procedure for the determination of alkylphenols in water by on-fiber derivatization with N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide, Anal. Chim. Acta, 2008, 624, 247-252.
    33 Regueiro, J.; Becerril, E.; Garcia-Jares, C.; Llompart, M., Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography–tandem mass spectrometry, J. Chromatogr. A, 2009, 1216, 4693-4702.
    34 Skoog, D.A.; Holler, F.J.; Crouch, S.R., Principles of instrumental analysis, 6th ed., Thomson Learning, 2007.
    35 Soares, A.; Guieysse, B.; Jefferson, B.; Cartmell, E.; Lester, J.N., Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters, Environ. Int., 2008, 34, 1033-1049.
    36 Spehar, R.L.; Brooke, L.T.; Markee, T.P.; Kahl, M.D., Comparative toxicity and bioconcentration of nonylphenol in freshwater organisms, Environ. Toxicol. Chem., 2010, 29, 2104-211.
    37 Sterckx, F.L.; Saison, D.; Delvaux, F.R., Determination of volatile monophenols in beer using acetylation and headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry, Anal. Chim. Acta, 2010, 676, 53-59.
    38 Sánchez-Avila, J.; Quintana, J.; Ventura, F.; Tauler, R.; Duarte, C.M.; Lacorte, S., Stir bar sorptive extraction-thermal desorption-gas chromatography–mass spectrometry: An effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing Directives, Mar. Pollut. Bull., 2010, 60, 103-112.
    39 Sainath, S.B.; Meena, R.; Venkata Suneel Kumar, C.H.; Kalapana, P.; Swetha, K.N.; Syamala Devi, N.; Sreenivasula Reddy, P., Embryonic exposure to octylphenol induces changes in testosterone levels and disrupts reproductive efficiency in rats at their adulthood, Food Chem. Toxicol, 2011, 49, 983-990.
    40 United Nations Environment Programme, http://www.unep.org/publications/
    41 Vega Morales, T.; Torres Padrón, M.E.; Sosa Ferrera, Z.; Santana Rodríguez, J.J., Determination of alkylphenol ethoxylates and their degradation products in liquid and solid samples, Trends Anal. Chem., 2009, 28, 1186-1200.
    42 WHO: Integrated risk assessment: nonylphenol case study, Report prepared for the WHO/UNEP/ILO international programme on chemical safety, WHO/IPCS/IRA/12/04, WHO, Geneva, Switzerland, 2004.
    43 Ying, G.; Williams, B.; Kookana, R., Environmental fate of alkylphenols and alkylphenol ethoxylates—a review, Environ. Int., 2002, 28, 215-226.
    44 Ying, G., Fate, behavior and effects of surfactants and their degradation products in the environment, Environ. Int., 2006, 32, 417-431.
    45 Yang, L.; Luan, T.; Lan, C., Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry, J. Chromatogr. A, 2006, 1104, 23-32.
    46 Zgoła-Grze’skowiak, A., Dispersive liquid–liquid microextraction applied to isolation and concentration of alkylphenols and their short-chained ethoxylates in water samples, J. Chromatogr. A, 2010, 1217, 1761-1766.

    QR CODE
    :::