跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭子軒
Arthur Perng
論文名稱: 慢顆粒流之輸送帶實驗與影像分析
Slow Granular Flow in the Conveyor Belt Experiment And Image Analysis
指導教授: 周憲德
Hsien-Ter Chou
卡艾瑋
Herve Capart
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 78
中文關鍵詞: 慢顆粒流影像分析型態分析孔洞擴散
外文關鍵詞: slow granular flow, pattern analysis, void diffusion, Rouse theory of suspended sediment transport, particle tracking velocimetry
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顆粒體是指一群獨立且不會相互發生化學變化的固體粒子。而顆粒流為描述一群顆粒體分散於水或空氣之兩相流的運動。本實驗使用輸送帶設備運載顆粒體,將其上之顆粒體運轉至穩定均勻流的條件觀察慢顆粒流,並運用用Voronoï影像法以期得到全區域之流場。研究目的為除了可以瞭解微觀上粒子的型態,並希望能與巨觀上顆粒整體之行為做一關連。
    本研究主要探討如何從數位攝影機取得連續圖檔,並舉一組資料為例子,分別說明如何得到單張之顆粒位置、多張顆粒位置之比對、進而得到速度剖面圖與擾動速度關係圖,並說明程式執行中如何刪去錯誤比對以及最佳化的過程,得到具統計意義之物理量。最後,再說明如何利用Voronoï鄰邊關係得到dd值;其與速度擾動量相關,並從中發現孔洞擴散平衡模式,此與Rouse輸砂理論裏的懸浮載平衡公式有異曲同工之妙。


    Focusing on the details of particle motions and patterns, the present experimental study examines the behaviour of slow granular flows. Steady uniform free surface shear flows of dry grains are generated in a tilting flume equipped with a conveyor belt. Granular positions close to the transparent flume sidewall are extracted from digital images. The Voronoï diagram is then used both to track particles over successive frames and to characterise the patterns formed by neighbouring grains. Specifically, quantitative estimates for the strength of velocity fluctuations and for the density of lattice defects are obtained.
    Overall, both the macro- and microscopic kinematics of the frictional flow are found to be controlled by the speed of the conveyer belt. On a microscopic scale, lattice defects and velocity fluctuations are found to be positively correlated with each other. Profiles of defect density over the flow depth suggest that three competing effects are at play: 1) static disruptions of crystalline arrangement close to the bottom due to the conveyer belt geometry; 2) gravitational pull of the granular assembly towards a state of close packing; 3) diffusive downwards infiltration of voids originating from the agitated free surface. After subtraction of effect 1), the measured profiles strikingly mirror the curves of the Rouse theory of suspended sediment transport.

    摘 要 I ABSTRACT II 目 錄 III 圖 目 錄 VI 表 目 錄 IX 符號表 X 第一章 緒 論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 名詞解釋 4 1.3.1 慢顆粒流 4 1.3.2 Voronoï diagrams 5 1.3.3 粒子溫度 6 1.4 論文架構 7 第二章 文獻回顧 9 2.1 顆粒流的實驗配置 9 2.1.1滾筒試驗 9 2.1.2 振動床試驗 10 2.1.3 傾斜式瀉槽試驗 11 2.1.4 循環式水槽試驗 11 2.1.5輸送帶試驗 11 2.1.6其他 12 2.2顆粒流的追蹤 12 2.3 VORONOÏ 介紹與應用 14 2.3.1何謂Voronoï 14 2.3.2 Voronoï之歷史 17 2.3.3 Voronoï在影像處理之應用 18 第三章 實驗規劃與方法 21 3.1實驗規劃 21 3.2 實驗設備 23 3.3 實驗方法與步驟 25 3.3.1 動態實驗 25 3.3.2 靜態實驗 28 第四章 資料處理與影像法 29 4.1 影像檔之前置作業 29 4.2 決定單張圖之顆粒位置 33 4.3兩張連圖顆粒之比對 34 4.4篩選機制 38 4.5 束限寬帶法 40 4.6 DD分佈圖 43 第五章 結果與討論 47 5.1巨觀-速度場的探討 47 5.1.1 速度剖面圖 47 5.1.2 剪應變率之關係 51 5.2 微觀-擾動速度與DD值 53 5.2.1 慢顆粒流之速度擾動量 53 5.2.2 粒子溫度 57 5.2.3 DD值 59 5.3 DD值所蘊含的物理現象 64 5.3.1 孔洞傳輸模型 65 5.3.2 輸送帶幾何條件之背景值 66 5.3.3 Ro參數與孔洞擴散動平衡 69 第六章 結論與建議 73 6.1結論 73 6.2建議 74 參考文獻 75 【中文部份】 75 【英文部份】 75

    【中文部份】
    周憲德、張藝耀(2000),「三維顆粒堆積受水平振動之斜坡傾角變化」,力學期刊系列B 第十六卷,第二期,第153-160頁。
    周憲德、吳京霖(2001),「砂粒受水平振動行為之研究」,國立中央大學土木工程研究所碩士論文,中壢。
    蕭述三、戴其璜(2001),「振動床運動機制之研究」,國立中央大學機械工程研究所碩士論文,中壢。
    黎璧賢、賈魯強(2001),「顆粒體複雜流動之研究」,國立中央大學物理與天文研究所博士論文,中壢。
    【英文部份】
    Albers, G., Guibas, L.J., Mitchell, J.S.B., and Roos, T. (1998), “Voronoï diagrams of moving points”, Int. J. Comput. Geom. & Appl, Vol. 8, pp. 365-379.
    Allen, M. P. , Frenkel, D. , and Gignac, W. (1983), “A Monte Carlo simulation study of the two-dimensional melting mechanism ”, J. Chem. Phys, Vol. 78, No. 6, pp. 4206-4222.
    Allen, M. P., and Tildesley, D. J. (1987), “Computer Simulations of Liquids”, Oxford University Press, Oxford.
    Allen, P. A. (1997), “Earth Sueface Processes ”, Blackwell Science.
    Bagnold, R. A. (1954), “Experiments on a gravity-free dispersion of large solid sphere in a Newtonian fluid under shear”, Vol. 225, pp. 49-63.
    Capart, H.(2000), “Dam-break induced geomorphic flows and the transition from solid- to fluid-like behaviour across evolving interfaces”,PhD thesis, UCL, Belgium.
    Capart, H., Young, D.L.,and Zech, Y. (2002), “Voronoï imaging methods for the measurement of granular flows”, Exp. Fluids, Vol. 32, pp. 121-135.
    Caram, H., and Hong, D. C. (1991), “Random-walk approach to granular flows”, Physical Review Letters, Vol. 67, No. 7, pp. 828-831.
    Davies, T.R.H. (1988), “Debris flow surges – a laboratory investigation”, Mitt. d. Versuchsan-stalt fur Wasserbau, Hydrologie und Glaziologie Nr. 96 , ETH Zurich.
    Drake, T.G. (1990), “Structural features in granular flows”, Journal of Geophysical Research , Vol. 95, No. B6, pp. 8681-8696.
    Fortune, S.(1987), “A sweepline algorithm for Voronoi diagrams”, Algorithmica, No. 2, pp. 153-174.
    Fujita, I., Muste, M.,and Kruger, A. (1998), “Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications”, J. Hydr. Res, Vol. 36, pp. 397-414.
    Goodrich, M.T., Mitchell, J.S.B.,and Orletsky, M.W. (1999), “Approximate geometric pattern matching under rigid motions”, IEEE Trans. Pattern Anal. Machine Intell, Vol. 21, pp. 371-379.
    Guler, M., Edil, T.B.,and Bosscher, P.J. (1999), “Measurement of particle movement in granular soils using image analysis”, J. Comp .Civ. Eng., Vol. 13, pp. 116-122.
    Hoofd, L., Turek, Z., Kubat, K., Ringnalda, B.E.M., and Kazda, S. (1985), “Variability of intercapillary distance estimated on histological sections of rat heart”, Advances in Experimental Medicine and Biology, Vol.191, pp. 239-247.
    Hotta, N., and Ohta, T. (2000), “Pore-water pressure of debris flows”, Phys. Chem. Earth (B),Vol. 25, No. 4, pp.381-385.
    Hübl, J., and Steinwendtner, H. (2000), “Estimation of rheological properties of viscous debris flow using a belt conveyor”, Phys. Chem. Earth (B), Vol. 25, No. 9, pp.751-755.
    Huang, H.T., Fiedler, H.E., and Wang, J.J. (1993), “Limitation and improvement of PIV. Part I: limitation of conventional techniques due to deformation of particle image patterns”, Exp. Fluids, Vol. 15, pp. 168-174.
    Jähne, B. (1995), “Digital Image Processing”, Springer.
    Jenkins, J.T., and Hanes, D.M. (1998), “Collisional sheet-flow of sediment driven by a turbulent fluid”, J. Fluid Mech, Vol. 370, pp. 29-52.
    Karion, A., and Hunt, M.L.(1999), “Size segregation in cylindrical horizontal Couette flows of particles”, IUTAM Symposium.
    Kenkel, N.C., Hoskins, J.A., and Hoskins, W.D. (1989) ,”Edge effects in the use of area polygons to study competition”, Ecology, No. 70, pp. 272-274.
    Le Caer, G., and Ho, J.S. (1990), “The Voronoï tesselation generated from eigenvalues of complex random matrixes”, J. Phys. A, Vol. 23, pp. 3279-3295.
    Okabe, A., Boots, B., and Sugihara, K. (1992), “Spatial Tesselations: Concepts and Applications of Voronoï Diagrams”, Wiley.
    Rouse, H.(1936), “Modern conceptions of the mechanics of fluid turbulence”, Transactions of the American Society of Civil Engineers, Vol. 102, No. 1965, pp.463-543.
    Samadani, A., Pradhan, A., and Kudrolli, A. (1999), “Size segregation of granular matter in silo discharges”, Physical Review E, Vol. 60, pp. 7203-7209.
    Sethi, I. K., and Jain, R. (1987), “Finding trajectories of feature points in a monocular image sequence”, IEEE Trans. Pattern Anal. Machine Intell. Vol. 9, pp. 56-73.
    Sibson, R. (1981), “A brief description of natural neighbour interpolation. In: Interpreting Multivariate Data (ed. Barnett C)”, Wiley, pp. 21-36.
    Uddin, M.S., Inaba, H., Itakura, Y., and Kasahara, M. (1998), “Estimation of the surface velocity of debris flow with computer-based spatial filtering”, Applied Optics, Vol. 37, pp. 6234-6239.
    Willert, C. E., and Gharib, M. (1991) , “Digital particle image velocimetry”, Exp. Fluids, Vol. 10, pp. 181-193.

    QR CODE
    :::