跳到主要內容

進階查詢 / 詳目顯示

研究生: 陳氏秋竹
Tran Thi Thu Truc
論文名稱: 狹窄渠流中圓柱橋墩流場的大渦數值模擬
Large Eddy Simulation of the Flow Field around a Circular Cylinder in Narrow Open Channels
指導教授: 朱佳仁
Chia-Ren Chu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 英文
論文頁數: 146
中文關鍵詞: 大渦流模擬狹窄渠道阻滯效應阻力係數渦度分布福德數
外文關鍵詞: Large Eddy Simulation, Narrow Channel, Blockage Effect, Hydrodynamic Forces, Vorticity Distribution, Froude Number
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用大渦模擬(Large Eddy Simulation, LES)模式,結合流體體積法(Volume of Fluid, VOF),分析狹窄渠流中圓柱形橋墩周圍的流場,數值模型的準確性經由渠流實驗結果比對予以驗證。並透過一系列數值模擬阻滯效應與入流福德數(Froude no.)在狹窄渠道條件下,探討對圓柱周圍的流場變化、渦流結構與橋墩的受力之影響。研究結果顯示:當圓柱直徑與渠道寬度的阻滯比(Blockage ratio, Br) 超過 20% 時,阻滯效應會造成圓柱周圍渦流結構、圓柱體表面壓力、阻力係數、橫向力係數變化幅度以及史徹荷數(Strouhal number)皆產生顯著的影響。較高的阻滯比會增強近壁渦流的生成,並強化圓柱周圍的剪切層。垂直向(Ωy)、順流向(Ωx)與橫向(Ωz)的渦度分量均會隨著Br增加而變大,使得近底部的渦流結構更為強烈且具廣泛空間分布,並形成水平方向延伸的渦流結構。在較高阻滯比下,順流向的渦度往下游衰減速度變慢,使得有序渦流結構得以延伸至更下游位置。這些變化凸顯狹窄渠道中阻滯效應會放大流場不穩定性方面的關鍵角色,對橋墩結構的受力與河床局部沖刷之發展具有重要意涵。
    本研究亦探討在阻滯比 Br = 30% 狀況下,入流福德數(Froude no.)對橋墩受力及渦流場的影響。模擬結果顯示:隨著福德數增加,上游水面會因為阻滯效應而壅高,流經圓柱體時,流速增加形成超臨界流,柱體下游產生局部性水躍後又恢復成亞臨界流。隨著福德數改變,圓柱體的阻力係數 CD ≈ 2.11,橫向力係數的均方根值及史特勞哈數幾乎不變。渦度分析顯示:會加強圓柱–河床交界處的垂直渦度,強化逆向旋轉的順流渦,並增強沿剪切層的橫向捲吸現象。這些變化使渦度幅值增大、渦心位置偏移,並產生更複雜的三維流場結構。在下游區域,低福德數會形成較弱且快速消散的對稱渦旋;而高福德數則產生更強、持續且混亂的波動。研究結果有助於狹窄渠道中圓柱結構或兩個橋墩十分靠近時水動力與渦度場的瞭解。


    This study employs a Large Eddy Simulation (LES) model and the Volume of Fluid (VOF) method to investigate the flow field around a circular cylinder in narrow open channels. The accuracy of the numerical model is validated through comparison with experimental results of a flume study. A series of numerical simulations are conducted to examine the effects of blockage and inflow Froude number, focusing on their influence on flow field characteristics, vortex structures, and the hydrodynamic forces acting on the circular cylinder. The simulation results indicate that when the blockage ratio, Br, defined as the ratio of the cylinder diameter to the channel width—exceeds 20%, the blockage effect significantly enhances the vortex structures around the cylinder, surface pressures, drag coefficient, lateral force coefficient, and the Strouhal number. A higher blockage ratio intensifies the near-wall vortices and strengthens the shear layers around the cylinder. The vertical (Ωy), streamwise (Ωx), and spanwise (Ωz) vorticity components all increase with Br, leading to stronger and more spatially extensive vortex structures near the bed. The downstream decay rate of streamwise vorticity becomes slower under higher Br conditions, allowing coherent vortex structures to persist farther downstream. These findings underscore the critical role of blockage effects in amplifying flow instability in narrow channels, with important implication for hydrodynamic loading on bridge piers and the development of local scour on the riverbed.
    This study also examines the impact of inflow Froude number on pier-induced forces and vortex dynamics under a blockage ratio of Br = 30%. Simulation results demonstrate that with increasing Froude number, the water surface upstream of the cylinder elevates due to the blockage effect. When flowing through the cylinder, the flow velocity increases, resulting in supercritical flow. A localized hydraulic jump occurs downstream of the cylinder, before the flow returns to subcritical flow. As the Froude number changes, the drag coefficient of the cylinder (CD) remains approximately 2.11, while the root-mean-square value of the lateral force coefficient and the Strouhal number remain virtually unchanged. Vorticity analysis shows that the vertical vorticity at the cylinder-bed interface is enhanced, counter-rotating downstream vortices are strengthened, and lateral entrainment along the shear layer is intensified. These changes increase the vorticity amplitude, shift the vortex center, and produce a more complex three-dimensional flow field structure. In the downstream region, low Froude numbers produce weak, rapidly dissipating symmetric vortices, while high Froude numbers produce stronger, persistent, and chaotic fluctuations. The research results help to understand the hydrodynamic and vorticity fields when cylindrical structures or two bridge piers are closely spaced in narrow channels.

    TABLE OF CONTENTS CHINESE ABSTRACT/中文摘要 i ABSTRACT ii ACKNOWLEDGEMTENTS iv TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiii LIST OF NOTATIONS xiv CHAPTER 1. INTRODUCTION 1 1.1. Review for Hydrodynamic Loadings 2 1.2. Review for Horseshoe Vortex 5 1.3. Blockage Effect 11 CHAPTER 2. NUMERICAL MODEL 15 2.1. Governing Equations 15 2.2. Volume of Fluid Method 16 2.3. Inlet Velocity 18 CHAPTER 3. MODEL VALIDATION 19 CHAPTER 4. BLOCKAGE EFFECT 29 4.1. Hydrodynamic Loadings 29 4.2. Vorticity Distribution 34 CHAPTER 5. EFFECTS OF FROUDE NUMBER 67 5.1. Hydrodynamic Loadings 67 5.2. Vorticity Distribution 80 CHAPTER 6. CONCLUSIONS 116 REFERENCES 119

    REFERENCES
    Achenbach, E., and E. Heinecke. 1981. “On Vortex Shedding from Smooth and Rough Cylinders in the Range of Reynolds Numbers 6×103 to 5×106.” J. Fluid Mech., 109: 239–251. https://doi.org/10.1017/S002211208100102X.
    Arneson, L.A., Zevenbergen, L.W., Lagasse, P.F. and Clopper, P.E. 2012. Evaluating Scour at Bridges, Fifth Edition. Washington, D.C.
    Baker, C.J. 1979. “The Laminar Horseshoe Vortex.” J. Fluid Mech., 95: 347–367. https://doi.org/10.1017/S0022112079001506.
    Bearman, P.W. 1967. “On Vortex Street Wakes.” J. Fluid Mech., 28: 625–641. https://doi.org/10.1017/S0022112067002368.
    Blevins, R.D. 1984. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Co., New York, USA.
    Brandimarte, L., Paron, P. and Baldassarre, G.D. 2012. “Bridge Pier Scour: A Review of Processes, Measurements and Estimates.” Environ. Eng. Manag J, 11 (5): 975–989. https://doi.org/10.30638/eemj.2012.121.
    Cabot, W., and Moin, P. 1999. “Approximate Wall Boundary Conditions in the Large Eddy Simulation of High Reynolds Number Flow.” Flow Turbul. Combust., 63: 269–291. https://doi.org/10.1023/A:1009958917113.
    Chen, S., Zhao, W. and Wan, D. 2020. “CFD Study of Free Surface Effect on Flow around a Surface-Piercing Cylinder.” Proceedings of the 14th (2020) ISOPE Pacific-Asia Offshore Mechanics Symposium. Dalian, China.
    Chu, C.-R., Chung, C.H., Wu, T.-R. and Wang, C.Y. 2016. “Numerical Analysis of Free Surface Flow over a Submerged Rectangular Bridge Deck.” J. of Hydraulic Eng., 142(12): 04016060. https://doi.org/10.1061/(ASCE)HY.1943-7900. 0001177.
    Chu, C.-R., Lin, Y. A., Wu, T.-R. and Wang, C.Y. 2018. “Hydrodynamic Force of a Circular Cylinder Close to the Water Surface.” Comput Fluids, 171: 154–165. https://doi.org/10.1016/j.compfluid.2018.05.032.
    Chu, C.-R., Tran, T. T. T. and Wu, T.-R. 2021. “Numerical Analysis of Free-surface Flows over Rubber Dams.” Water, 13 (9): 1271. https://doi.org/10.3390/w13091271.
    Dargahi, B. 1989. “Experiments in Fluids the Turbulent Flow Field Around a Circular Cylinder.” Exp. Fluids, 8: 1–12. https://doi.org/10.1007/BF00203058.
    Dargahi, B. 1990. “Controlling Mechanism of Local Scouring.” J. Hydraul. Eng., 116: 1197–1214. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1197).
    Das, S., Das, R. and Mazumdar, A. 2014. “Vorticity and Circulation of Horseshoe Vortex in Equilibrium Scour Holes at Different Piers.” J. of the Institution of Engineers (India): Series A, 95 (2): 109–115. https://doi.org/10.1007/s40030-014-0078-7.
    Davis, R.W., Moor, E.F. and Purtell, L.P. 1984. “A numerical experimental study of confined flow around rectangular cylinders.” Physics of Fluids, 27: 40–59. https://doi.org/10.1063/1.864486.
    Deardorff, J.W. 1970. “A Numerical Study of Three-dimensional Turbulent Channel Flow at Large Reynolds Numbers.” J Fluid Mech, 41: 453–480. https://doi.org/10.1017/ S0022112070000691.
    DeLong, M. 1997. “Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive Schwarz-preconditioned FGMRES.” Technical Rep. No. LA-UR-97-4181, Los Alamos National Laboratory, Los Alamos, NM.
    Devenport, W., and Simpson, R.L. 1990. “Time-dependent and Time-averaged Turbulence Structure Near the Nose of a Wing-body Junction.” J. Fluid Mech., 210: 23–55. https://doi.org/10.1017/S0022112090001215.
    DNVGL-RP-C205. 2017. DNVGL-RP-C205: Environmental Conditions and Environmental Loads. Høvik, Norway.
    Escauriaza, C., and Sotiropoulos, F. 2011. “Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System.” Flow Turbul Combust, 86 (2): 231–262. https://doi.org/10.1007/s10494-010-9315-y.
    Gautam, P., Eldho, T. I., Mazumder, B. S. and Behera, M. R. 2019. “Experimental Study of Flow and Turbulence Characteristics Around Simple and Complex Piers Using PIV.” Experimental Thermal and Fluid Science, 100: 193–206. https://doi.org/10.1016/j.expthermflusci.2018.09.010.
    Gullbrand, J., and Chow, F.K. 2003. “The Effect of Numerical Errors and Turbulence Models in Large-eddy Simulations of Channel Flow, with and without Explicit Filtering.” J. Fluid Mech., 495: 323–341. https://doi.org/10.1017/S0022112003006268.
    Hirt, C.W., and Nichols, B.D. 1981. “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.” J Comput Phys, 39 (1): 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
    Hiwada, M., and Mabuchi, I. 1981. “Flow Behaviour and Heat Transfer around a Circular Cylinder at High Blockage Ratios.” Heat Transfer, Japan Res., 10 (N4): 17–36.
    Hurtado-Herrera, M., Zhang, W., Hammouti, A., Pham, V.B., and K. D. Nguyen. 2023. “Numerical Study of the Flow and Blockage Ratio of Cylindrical Pier Local Scour.” Applied Sciences, 13 (20). https://doi.org/10.3390/app132011501.
    Huynh, L.E., Chu, C.-R. and Wu, T.-R. 2023. “Hydrodynamic Loads of the Bridge Decks in Wave-current Combined Flows.” Ocean Engineering, 270: 113520. https://doi.org/10.1016/j.oceaneng.2022.113520.
    Imhof, D. 2004. Risk Assessment of Existing Bridge Structures. University of Cambridge, Cambridge, UK.
    Jeong, J., and Hussain, F. 1995. “On the identification of a vortex.” J. Fluid Mech, 285: 69–94. https://doi.org/10.1017/S0022112095000462.
    Khosronejad, A., Kang, S. and Sotiropoulos, F. 2012. “Experimental and Computational Investigation of Local Scour Around Bridge Piers.” Adv Water Resour, 37: 73–85. https://doi.org/10.1016/j.advwatres.2011.09.013.
    Kirkil, G., and Constantinescu, G. 2015. “Effects of Cylinder Reynolds Number on the Turbulent Horseshoe Vortex System and Near Wake of a Surface-mounted Circular Cylinder.” Physics of Fluids, 27 (7): 075102. https://doi.org/10.1063/1.4923063.
    Korzekwa, D.A. 2009. “Truchas - A Multi-physics Tool for Casting Simulation.” International Journal of Cast Metals Research, 22 (1–4): 187–191. https://doi.org/10.1179/136404609X367641.
    Lachaussée, F. 2018. “Érosion et Transport de Particules au Voisinage d’un Obstacle.” Ph.D. Thesis. Université Paris-Saclay. Paris, France.
    Larsson, J., and Kawai, D. S. 2012. “Wall-modeling in Large Eddy Simulation: Length Scales, Grid Resolution and Accuracy.” Physics of Fluids, 24: 015105. https://doi.org/10.1063/1.3678331.
    Lin, C., T. C. Ho, and S. Dey. 2008. “Characteristics of Steady Horseshoe Vortex System near Junction of Square Cylinder and Base Plate.” Journal of Engineering Mechanics, 134: 184–197. https://doi.org/10.1061/ASCE0733-93992008134:2184.
    Melville, B., and Coleman, S.E. 2000. Bridge Scour. Water Resource, LLC. Colorado, USA.
    Melville, B. W., and Raudkivi, A. J. 1977. “Flow Characteristics in Local Scour at Bridge Piers.” J. Hydraulic Research, 15 (4): 373–380. https://doi.org/10.1080/ 00221687709499641.
    National Transportation Safety Board. 1988. Collapse of New York Thruway (I-90) Bridge over the Schoharie Creek, Near Amsterdam, New York, April 5, 1987 (Highway Accident Report NTSB/HAR 88/02). Washington, DC, USA.
    Nguyen, Q.D., and Lei, C. 2021. “Hydrodynamic Characteristics of a Confined Circular Cylinder in Cross-Flows.” Ocean Engineering, 221: 108567. https://doi.org/10.1016/ j.oceaneng.2021.108567.
    Norberg, C. 2003. Fluctuating lift on a circular cylinder: Review and new measurements. J Fluids Struct, 17: 57-96.
    Olsen, N.R.B., and Kjellesvig, H.M. 1998. “Three-dimensional Numerical Flow Modeling for Estimation of Maximum Local Scour Depth.” J. of Hydraulic Research, 36 (4): 579–590. https://doi.org/10.1080/00221689809498610.
    Olsen, N.R.B., and Melaaen, M.C. 1993. “Three-Dimensional Calculation of Scour Around Cylinders.” J. of Hydraulic Eng., 119: 1048–1054. https://doi.org/10.1061/ (ASCE)0733-9429(1993)119:9(1048).
    Omara, H., and Tawfik, A. 2018. “Numerical Study of Local Scour Around Bridge Piers.” IOP Conf Ser Earth Environ Sci, 012013. Paris, France: Institute of Physics Publishing.
    O’Neil, J., and Meneveau, C. 1997. “Subgrid-Scale Stresses and their Modelling in a Turbulent Plane Wake.” J Fluid Mech, 349: 253–293. https://doi.org/10.1017/ S0022112097006885.
    Paik, J., Escauriaza, C. and Sotiropoulos, F. 2007. “On the Bimodal Dynamics of the Turbulent Horseshoe Vortex System in a Wing-body Junction.” Physics of Fluids, 19 (4). https://doi.org/10.1063/1.2716813.
    Piomelli, U., and Chasnov, J. R. 1996. Chapter 7 Large-Eddy Simulations: Theory and Applications. Kluwer Academic Publishers.
    Pope, S.B. 2000. Turbulent Flows. Cambridge University Press. Cambridge, UK.
    Railway Safety Commission. 2010. Compliance Audit Following the Partial Collapse of the Broadmeadow Viaduct. Dublin, Ireland.
    Ranga Raju, K.G., Rana, O.P.S., Asawa, G.L. and Pillai, A.S.N. 1983. “Rational Assessment of Blockage Effect in Channel Flow Past Smooth Circular Cylinders.” J. of Hydraulic Research, 21 (4): 289–302. https://doi.org/10.1080/00221688309499435.
    Reichl, P., Hourigan, K. and Thompson, M. C. 2005. “Flow Past a Cylinder Close to a Free Surface.” J Fluid Mech, 533: 269–296. https://doi.org/10.1017/S0022112005004209.
    Richardson, E.V., and Davis, S.R. 2001. Evaluating Scour at Bridges, Fourth Edition. Washington, D.C.: FHWA NHI 01-001 HEC-18.
    Richter, A., and Naudascher, E. 1976. “Fluctuating Forces on a Rigid Circular Cylinder in Confined Flow.” J. Fluid Mech, (78) 3: 561–576. https://doi.org/10.1017/ S0022112076002607.
    Rodi, W., Constantinescu, G. and Stoesser, T. 2013. Large-Eddy Simulation in Hydraulics. CRC Press: Boca Raton, FL, USA.
    Roshko, A. 1954. On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies. Washington DC, USA.
    Roulund, A., Sumer, B. M., Fredsøe, J. and Michelsen, J. 2005. “Numerical and Experimental Investigation of Flow and Scour Around a Circular Pile.” J. Fluid Mech, 534: 351–401. https://doi.org/10.1017/S0022112005004507.
    Salim, S.M., and Cheah, S.C. 2009. “Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows.” International Multi-conference of Engineers and Computer Scientists, 2210. International Association of Engineers.
    Schlichting, H. 1979. Boundary Layer Theory. McGraw-Hill Inc. New York, USA.
    Simao Antunes Do Carmo, J. 2021. “The Hintze Ribeiro Bridge Collapse and the Lessons Learned.” River Basin Management - Sustainability Issues and Planning Strategies. Intech Open. doi: 10.5772/intechopen.96711
    Simpson, R.L. 2001. “Junction Flows.” Annu Rev Fluid Mech, 33: 415–443. https://doi.org/10.1146/annurev.fluid.33.1.415.
    Smagorinsky, J. 1963. “General Circulation Experiments with the Primitive Equation I: the Basic Experiment.” Mon Weather Rev, 91: 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
    Sumer, B.M., and Fredsøe, J. 2006. Hydrodynamics Around Cylindrical Structures. Singapore: World Scientific Publishing.
    Summer, M., Fredsøe, J. and Christiansen, N. 1992. “Scour around Vertical Pile in Waves.” J. Water Port Coast Ocean Eng, 118: 15–31. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(15).
    Surry, D. 1972. “Some Effects of Intense Turbulence on the Aerodynamics of a Circular Cylinder at Cubcritical Reynolds Number.” J. Fluid Mech, 52: 543–563. https://doi.org/10.1017/S0022112072001582.
    Torsethaugen, K. 1975. Localcrosjon ved Store Konstuksjoner: Modellforsøk (Norwegian). Trondheim.
    Tran, T. T. T., Chu, C.-R. and Wu, T.-R. 2025. “Effect of Hydrodynamic Loadings and Vorticity Distribution on a Circular Cylinder in a Narrow Channel.” Water, 17: 2366. https://doi.org/10.3390/w17162366.
    Truong, N. M., Wu, T.-R., Chu, C.-R. and Wang, C.-Y. 2024. “A Numerical Study of Plunging Breakers in the Nearshore Area Under the Influence of Wind.” Ocean Engineering, 312: 119171. https://doi.org/10.1016/j.oceaneng.2024.119171.
    Tseng, M.H., Yen, C.L. and Song, C.C.S. 2000. “Computation of Three-dimensional Flow Around Square and Circular Piers.” Int. J. Numer. Meth. Fluids, 34: 207–227. https://doi.org/10.1002/1097-0363(20001015)34:3<207::AID-FLD31>3.0.CO;2-R.
    Uchida, T., Ato, T., Kobayashi, D. , Maghrebi, M. F. and Kawahara, Y. 2022. “Hydrodynamic Forces on Emergent Cylinders in Non-uniform Flow.” Environmental Fluid Mechanics, 22 (6): 1355–1379. https://doi.org/10.1007/s10652-022-09898-7.
    Wardhana, K., and Hadipriono, F. C. 2003. “Analysis of Recent Bridge Failures in the United States.” 17: 144–150. https://doi.org/10.1061/ASCE0887-3828200317:3144.
    Wu, T.-R., Vuong, T. H. N., Lin, J. W., Chu, C.-R. and Wang, C. Y. 2018. “Three-Dimensional Numerical Study on the Interaction Between Dam-Break Wave and Cylinder Array.” J. of Earthquake and Tsunami, 12 (2): 1840007. https://doi.org/10.1142/ S1793431118400079.
    Yang, P., Li, R. and Pan, L. 2022. “Effects of Bed Roughness on a Horseshoe Vortex in Overland Water Flowing Past a Cylinder.” J. of Hydrology, 606: 127385. https://doi.org/10.1016/j.jhydrol.2021.127385.
    Zhang, G., Liu, Y., Liu, J., Lan, S. and Yang, J. 2022. “Causes and Statistical Characteristics of Bridge Failures: A Review.” J. of Traffic and Transportation Engineering, 9 (3): 388–406. Chang-an University. https://doi.org/10.1016/j.jtte.2021.12.003.

    QR CODE
    :::