跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李宜妮
YI-NI LI
論文名稱: 利用Trigger factor以及FKBP12兩種伴護蛋白來調控聚麩胺醯酸蛋白聚集化現象
Modulate polyglutamine protein aggregation by Trigger factor and FKBP12
指導教授: 黃人則
Joseph Jen-Tse Huang
謝發坤
Fa-Kuen Shieh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 杭丁頓伴護蛋白蛋白質聚集化
外文關鍵詞: huntingtin, chaperone, protein aggregation
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 杭丁頓舞蹈症(Huntington’s disease,HD)是一種遺傳性的神經退化疾病,病因由於基因突變造成CAG三核苷酸重複序列過多。三核苷酸CAG所對應的氨基酸為麩胺醯酸(glutamine),過多的麩胺醯酸片段使得杭丁頓蛋白質產生錯誤摺疊;近來研究指出伴護蛋白可以避免蛋白的錯誤摺疊,抑制因為錯誤 HTT蛋白所造成的神經毒性。根據研究發現在含有過多的麩胺醯酸片段的細胞中過度表達FKBP12伴護蛋白可有效降低細胞死亡率;而另一種伴護蛋白Trigger factor (TF),其蛋白質中段PPIase區域為FKBP12的同源結構,能與核醣體結合幫助新生蛋白的摺疊。因此,我們利用各種生物物理和生物化學的方法,探討不同的伴護蛋白(TF和FKBP12)是否幫助杭丁頓舞蹈症蛋白質摺疊,改變蛋白質聚集物的含量或性質。
    我們成功使用glutathione-S-transferase (GST) 蛋白質系統,表達及純化出不同麩胺醯酸數目的蛋白質(GST-HTT25Q和GST-HTT43Q)。由混濁度測試和filter retardation assay實驗觀察TF和FKBP12對蛋白質聚集物含量上的變化。結果顯示,TF能大幅降低HTT43Q蛋白質聚集體,相反的,FKBP12則會增加HTT43Q蛋白質聚集體含量。穿透式電子顯微鏡觀察蛋白質在TF和FKBP12存在下形態上的變化,HTT43Q在TF存在下培養七天生成HTT43Q單獨在三天時所形成的原纖維結構(protofibril);HTT43Q在FKBP12存在下一、三和七天都產生大量且沒有特定構形的結構物。然而在Thioflavin T (ThT) 螢光光譜偵測類澱粉纖維含量,TF和FKBP12在一天都有抑制HTT43Q螢光訊號的現象,但七天TF抑制效果下降。同時,拉曼光譜觀測伴護蛋白對二級結構組成比例的差異,分析結果TF和FKBP12的存在皆使得HTT43Q聚集體的二級結構β-sheet比例下降。
    我們推論TF和FKBP12伴護蛋白可用兩種截然不同的方式對錯誤摺疊的杭丁頓蛋白質產生作用。TF能延緩聚集化過程,FKBP12則是改變聚集物的構形和性質。此研究幫助我們瞭解伴護蛋白對杭丁頓舞蹈症聚集體的影響,提供未來發展杭丁頓舞蹈症用藥的方向。


    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the mutational expansion of CAG triplet repeat in mutant Huntingtin (mHTT) protein. These proteins form aggregates in the affected neurons of patient brains that correlate with disease progression and toxicity. Recent studies reported chaperone can prevent protein misfolding and serve as powerful inhibitor mutant HTT-induced neurotoxicity. According to the recent studies, FKBP12 chaperone had PPIase activity and be decreased the protein level in HD mouse. Another chaperone, Trigger factor (TF), the TFPPIase and FKBP12 are structural homology, can decrease protein aggregates. Here, we investigated whether the presence of FKBP12/TF chaperone could effectively change amounts and properties of polyQ aggregates by biophysical/biochemical technique.
    We have successfully established the GST-polyQ system and apply in vitro aggregation assay to unravel the effect of chaperone in aggregation process. Turbidity assay and filter assay revealed TF can significantly suppress HTT43Q aggregates, while FKBP12 increase HTT43Q aggregates. Moreover, we examined the morphology of HTT25Q and HTT43Q in the presence/absence of TF/FKBP12 under Transmission Electron Microscopy (TEM). Massive fibrils can be observed in HTT43Q only. To our surprise, TF significantly changed the morphology of HTT43Q and formed short protofibril structures. Meanwhile, FKBP12 formed amorphous aggregate structures. We further used Thioflavin T (ThT) fluorescence to detect amyloidogenic fibrils. Results showed that TF can FKBP12 can both suppress amyloid fiber at day 1. The inhibition effect can still be seen in FKBP12 but not in TF at day 7, indicating TF can only retard the amyloidogenic process while FKBP12 can shift the process to form non-amyloid aggregates. From the FT-Raman spectroscopy,β-sheet composition both decreased in TF and FKBP12 compared with HTT43Q only.
    Here, we propose TF and FKBP12 can modulate mHTT protein aggregation in different pathway. While TF can only retard the amyloidogenic process, FKBP12 can shift the process to form non-amyloid aggregates. This may shed light on the future therapeutical treatments of Huntington’s disease.

    中文提要 …………………………………………………………… i 英文提要 …………………………………………………………… ii 誌謝 …………………………………………………………… iii 目錄 …………………………………………………………… iv 圖目錄 …………………………………………………………… v 表目錄 …………………………………………………………… ix 符號說明 …………………………………………………………… x 一、緒論 …………………………………………………………… 1 二、實驗材料與方法…………………………………………………… 11 三、實驗結果…………………………………………………………… 27 四、實驗總結與結果討論……………………………………………… 47 五、參考文獻…………………………………………………………… 52

    1. Landles, C.; Bates, G. P., Huntingtin and the molecular pathogenesis of Huntington's
    disease. Fourth in molecular medicine review series. EMBO Rep 2004, 5 (10), 958-63.
    2. Nekooki-Machida, Y.; Kurosawa, M.; Nukina, N.; Ito, K.; Oda, T.; Tanaka, M., Distinct
    conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different
    cytotoxicity. Proc Natl Acad Sci U S A 2009, 106 (24), 9679-84.
    3. Cattaneo, E.; Zuccato, C.; Tartari, M., Normal huntingtin function: an alternative
    approach to Huntington's disease. Nature reviews. Neuroscience 2005, 6 (12), 919-30.
    4. Arrasate, M.; Finkbeiner, S., Protein aggregates in Huntington's disease. Exp Neurol
    2012, 238 (1), 1-11.
    5. Hollenbach, B.; Scherzinger, E.; Schweiger, K.; R. Lurz, H. L.; Wanker, E. E.,
    Aggregation of truncated GST±HD exon 1 fusion proteins containing normal range and
    expanded glutamine repeats. Phil Trans R Soc Lond B 1999, 354, 991-994.
    6. Zhang, Q. C.; Yeh, T. L.; Leyva, A.; Frank, L. G.; Miller, J.; Kim, Y. E.; Langen, R.;
    Finkbeiner, S.; Amzel, M. L.; Ross, C. A.; Poirier, M. A., A compact beta model of
    huntingtin toxicity. J Biol Chem 2011, 286 (10), 8188-96.
    7. Dehay, B.; Bertolotti, A., Critical role of the proline-rich region in Huntingtin for
    aggregation and cytotoxicity in yeast. J Biol Chem 2006, 281 (47), 35608-15.
    8. Southwell, A. L.; Khoshnan, A.; Dunn, D. E.; Bugg, C. W.; Lo, D. C.; Patterson, P. H.,
    Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover
    and reduce neurotoxicity. J Neurosci 2008, 28 (36), 9013-20.
    9. Khare, S.; Ding, F.; Gwanmesia, K.; Dokholyan, N., Molecular origin of polyglutamine
    aggregation in neurodegenerative diseases. PLoS Computational Biology 2005, preprint
    (2005), e30.
    10. Poirier, M. A.; Li, H.; Macosko, J.; Cai, S.; Amzel, M.; Ross, C. A., Huntingtin spheroids
    and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem 2002, 277 (43),
    41032-7.
    11. Iuchi, S.; Hoffner, G.; Verbeke, P.; Djian, P.; Green, H., Oligomeric and polymeric
    aggregates formed by proteins containing expanded polyglutamine. Proc Natl Acad Sci
    U S A 2003, 100 (5), 2409-14.
    12. Ross, C. A.; Poirier, M. A., Protein aggregation and neurodegenerative disease. Nat Med
    2004, 10 Suppl, S10-7.
    13. 蔡惠旭, 分子觀點下的蛋白質摺疊、錯誤摺疊及其聚集. J Chin Chem Soc 2005, 63
    (4), 601-612.
    14. Sipe, J. D.; Cohen, A. S., Review: history of the amyloid fibril. J Struct Biol 2000, 130
    (2-3), 88-98.
    15. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid
    fibrils. Biochim Biophys Acta 2010, 1804 (7), 1405-12.
    16. Eisert, R.; Felau, L.; Brown, L. R., Methods for enhancing the accuracy and
    reproducibility of Congo red and thioflavin T assays. Anal Biochem 2006, 353 (1),
    144-6.
    17. Dzwolak, W.; Pecul, M., Chiral bias of amyloid fibrils revealed by the twisted
    conformation of Thioflavin T: an induced circular dichroism/DFT study. FEBS Lett 2005,
    579 (29), 6601-3.
    18. Kuznetsova, I. M.; Sulatskaya, A. I.; Uversky, V. N.; Turoverov, K. K., A new trend in
    the experimental methodology for the analysis of the thioflavin T binding to amyloid
    fibrils. Mol Neurobiol 2012, 45 (3), 488-98.
    19. Kubota, H.; Kitamura, A.; Nagata, K., Analyzing the aggregation of
    polyglutamine-expansion proteins and its modulation by molecular chaperones. Methods
    2011, 53 (3), 267-74.
    20. Ye, C.-F.; Li, H., HSP40 Ameliorates Impairment of Insulin Secretion by Inhibiting
    Huntingtin Aggregation in a HD Pancreatic β Cell Model. Biosci Biotechnol Biochem
    2009, 73 (8), 1787-1792.
    21. Guzhova, I. V.; Lazarev, V. F.; Kaznacheeva, A. V.; Ippolitova, M. V.; Muronetz, V. I.;
    Kinev, A. V.; Margulis, B. A., Novel mechanism of Hsp70 chaperone-mediated
    prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum
    Mol Genet 2011, 20 (20), 3953-63.
    22. Behrends, C.; Langer, C. A.; Boteva, R.; Bottcher, U. M.; Stemp, M. J.; Schaffar, G.;
    Rao, B. V.; Giese, A.; Kretzschmar, H.; Siegers, K.; Hartl, F. U., Chaperonin TRiC
    promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell
    2006, 23 (6), 887-97.
    23. Sakahira, H.; Breuer, P.; Hayer-Hartl, M. K.; Hartl, F. U., Molecular chaperones as
    modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A
    2002, 99 Suppl 4, 16412-8.
    24. Chiang, M.-C.; Juo, C.-G.; Chang, H.-H.; Chen, H.-M.; Yi, E. C.; Chern, Y., Systematic
    Uncovering of Multiple Pathways Underlying the Pathology of Huntington Disease by
    an Acid-cleavable Isotope-coded Affinity Tag Approach. Mol Cell Proteomics 2007, 6,
    781-797.
    25. CAO, W.; KONSOLAKI, M., FKBP immunophilins and Alzheimer's disease: A
    chaperoned affair. J Biosci 2011, 63 (3), 493–498.
    26. Suzuki, M.; Nagai, Y.; Wada, K.; Koike, T., Calcium leak through ryanodine receptor is
    involved in neuronal death induced by mutant huntingtin. Biochem Biophys Res Commun
    2012, 429 (1-2), 18-23.
    27. Kang, C. B.; Hong, Y.; Dhe-Paganon, S.; Yoon, H. S., FKBP family proteins:
    immunophilins with versatile biological functions. Neurosignals 2008, 16 (4), 318-25.
    28. Jakob, R. P.; Zoldak, G.; Aumuller, T.; Schmid, F. X., Chaperone domains convert prolyl
    isomerases into generic catalysts of protein folding. Proc Natl Acad Sci U S A 2009, 106
    (48), 20282-7.
    29. Vogtherr, M.; Jacobs, D. M.; Parac, T. N.; Maurer, M.; Pahl, A.; Saxena, K.; Rüterjans,
    H.; Griesinger, C.; Fiebig, K. M., NMR Solution Structure and Dynamics of the
    Peptidyl-prolyl cis–trans Isomerase Domain of the Trigger Factor from Mycoplasma
    genitalium Compared to FK506-binding Protein. J Mol Biol 2002, 318 (4), 1097-1115.
    30. O’Donnell, C. W.; Lis, M., The Trigger Factor Chaperone. 2006.
    31. Merz, F.; Hoffmann, A.; Rutkowska, A.; Zachmann-Brand, B.; Bukau, B.; Deuerling, E.,
    The C-terminal domain of Escherichia coli trigger factor represents the central module of
    its chaperone activity. J Biol Chem 2006, 281 (42), 31963-71.
    32. Liu, C. P.; Perrett, S.; Zhou, J. M., Dimeric trigger factor stably binds folding-competent
    intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow
    refolding. J Biol Chem 2005, 280 (14), 13315-20.
    33. NISHIHARA, K.; KANEMORI, M.; YANAGI, H.; YURA, T., Overexpression of
    Trigger Factor Prevents Aggregation of Recombinant Proteins in Escherichia coli. Appl
    Environ Microbiol 2000, 66 (3), 884-889.
    34. Guan, K.; Dixon, J. E., Eukaryotic Proteins Expressed in Escherichia coli:An Improved
    Thrombin Cleavage and Purification Procedure of Fusion Proteins with Glutathione
    S-Transferase. Anal Biochem 1991, 192, 262-267
    35. Purbey, P. K.; Jayakumar, P. C.; Deepalakshmi, P. D.; Patole1, M. S.; Galande, S., GST
    fusion vector with caspase-6 cleavage site for removal of fusion tag during column
    purification. BioTechniques 2005, 38 (3), 360-366.
    36. Lin, F.; Wu, J.; Wang, Y.; Qin, Z., Huntingtin Cleavage Induced by Thrombin In Vitro.
    Acta Biochim Biophys Sin (Shanghai) 2007, 39 (1).
    37. Nucifora, L. G.; Burke, K. A.; Feng, X.; Arbez, N.; Zhu, S.; Miller, J.; Yang, G.;
    Ratovitski, T.; Delannoy, M.; Muchowski, P. J.; Finkbeiner, S.; Legleiter, J.; Ross, C. A.;
    Poirier, M. A., Identification of novel potentially toxic oligomers formed in vitro from
    mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem 2012, 287 (19),
    16017-28.
    38. Langbehn, D. R.; Hayden, M. R.; Paulsen, J. S., CAG-repeat length and the age of onset
    in Huntington disease (HD): a review and validation study of statistical approaches. Am J
    Med Genet B Neuropsychiatr Genet 2010, 153B (2), 397-408.
    39. Heiser, V.; Engemann, S.; Brocker, W.; Dunkel, I.; Boeddrich, A.; Waelter, S.; Nordhoff,
    E.; Lurz, R.; Schugardt, N.; Rautenberg, S.; Herhaus, C.; Barnickel, G.; Bottcher, H.;
    Lehrach, H.; Wanker, E. E., Identification of benzothiazoles as potential polyglutamine
    aggregation inhibitors of Huntington's disease by using an automated filter retardation
    assay. Proc Natl Acad Sci U S A 2002, 99 Suppl 4, 16400-6.
    40. 生物電子顯微鏡學. 行政院國家科學委員會精密儀器發展中心編印.
    41. Hudson, S. A.; Ecroyd, H.; Kee, T. W.; Carver, J. A., The thioflavin T fluorescence assay
    for amyloid fibril detection can be biased by the presence of exogenous compounds.
    Febs J 2009, 276 (20), 5960-72.
    42. Hsu, J. C.; Chen, E. H.; Snoeberger, R. C., 3rd; Luh, F. Y.; Lim, T. S.; Hsu, C. P.; Chen,
    R. P., Thioflavin T and its photoirradiative derivatives: exploring their spectroscopic
    properties in the absence and presence of amyloid fibrils. J Phys Chem B 2013, 117 (13),
    3459-68.
    43. Maiti, N. C.; Apetri, M. M.; Zagorski, M. G.; Carey, P. R.; Anderson, V. E., Raman
    Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins:
    r-Synuclein. J Am Chem Soc 2004, 126, 2399-2408.
    44. Wacker, J. L.; Zareie, M. H.; Fong, H.; Sarikaya, M.; Muchowski, P. J., Hsp70 and
    Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by
    partitioning monomer. Nat Struct Mol Biol 2004, 11 (12), 1215-22.
    45. Jayaraman, M.; Kodali, R.; Sahoo, B.; Thakur, A. K.; Mayasundari, A.; Mishra, R.;
    Peterson, C. B.; Wetzel, R., Slow amyloid nucleation via alpha-helix-rich oligomeric
    intermediates in short polyglutamine-containing huntingtin fragments. J Mol Biol 2012,
    415 (5), 881-99.
    46. Wagner, A. S., Early conformational changes control spontaneous polyQ-mediated
    huntingtin polymerization. 2011, 117頁.
    47. Gerard, M.; Deleersnijder, A.; Daniels, V.; Schreurs, S.; Munck, S.; Reumers, V.; Pottel,
    H.; Engelborghs, Y.; Van den Haute, C.; Taymans, J. M.; Debyser, Z.; Baekelandt, V.,
    Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and
    Parkinson's disease-like pathology. J Neurosci 2010, 30 (7), 2454-63.
    48. Lee, T. H.; Pastorino, L.; Lu, K. P., Peptidyl-prolyl cis-trans isomerase Pin1 in ageing,
    cancer and Alzheimer disease. Expert Rev Mol Med 2011, 13, e21.

    QR CODE
    :::