跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王崇儒
Chung-Ju Wang
論文名稱: 利用壓電彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用
Using bender elements to evaluate the shear wave velocity in dynamic centrifuge modeling test and its applocation.
指導教授: 李崇正
Chung-Jung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 134
中文關鍵詞: 剪力波波速動態離心模型壓電彎曲元件液化
外文關鍵詞: liquefaction., shear wave velocity, dynamic centrifuge model, bender elements
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   地工離心機(geotechnical centrifuge)高速旋轉時,若要確實得知詴體內部之土層性質,需藉由詴驗方式進行模型地盤調查之動作。本研究以壓電彎曲元件(bender elements)量測離心模型於高g重力場下的土壤剪力波波速(shear wave velocity),以得知砂土模型在不同應力場模擬狀況下的土壤剪力波波速,以觀察剪力波波速剖面,了解詴體之土層性質。
      於不同圍壓狀態的模型詴體中量測剪力波波速,可推估該覆土應力狀態下之最大剪力模數(Gmax);另外,剪力波波速亦可進行土壤液化潛能評估之應用。本研究更開發於土壤詴體振動中量測剪力波波速之方法,以壓電彎曲元件量得詴體振動期間剪力波波速的變化,與孔隙水壓計量測超額孔隙水壓相比,探討動態超額孔隙水壓與剪力波波速演化之關係。
      研究結果顯示,本研究有效的利用壓電彎曲元件,在飽和離心模型詴體於高g離心重力場下進行波傳詴驗,了解模型砂土層之性質;並於80g離心重力場下驅動離心振動台振動砂土模型詴體,觀察土層受振後之性質變化,以及檢核剪力波波速液化評估法於本研究環境中之適用性。本研究亦成功於土壤詴體振動中以及超額孔隙水壓消散期間,量測剪力波波速隨時間之演化,藉以探討砂土層之動態反應。


      In this research, a bender elements system and the related software have been developed for evaluating the in-flight shear wave velocity in dynamic centrifuge tests. The in-flight shear wave velocity and the calculated maximum shear modulus profiles of the models were obtained. Before and after seismic events shear wave velocity profile can also be determined, and the profile is used to evaluate the change of dynamic soil property and the liquefaction potential of soil bed based soil resistance criteria in terms of shear wave velocity.
      During earthquakes the shear modulus would change with time. The developed bender element system is capable of measuring the evolution of shear wave velocity on the model during shaking as well. The test result shows that the shear wave velocities decrease with the increase of excess pore water pressure during shaking, while the shear wave velocities gradually increase as the excess pore water pressure dissipates after stop of shaking.

    第 1 章 、緒論 1 1-1研究動機與目的 1 1-2 研究方法 2 1-3論文架構 3 第 2 章 、文獻回顧 4 2-1土壤液化現象與機制 4 2-2 離心模型試驗基本原理 5 2-2-1 離心模型之基本靜態相似律 5 2-2-2 離心模型之基本動態相似律 7 2-3 土壤剪力模數之量測方式 9 2-3-1 現地試驗 9 2-3-2 室內試驗 10 2-4 土壤剪力模數之影響因素 11 2-4-1圍壓對剪力模數之影響 12 2-4-2土壤顆粒形狀對剪力模數之影響 13 2-5 室內試驗應用壓電彎曲元件進行波傳試驗之方法 14 2-6於離心模型中的剪力波速量測技術 15 2-7剪力波速液化潛能評估法 17 2-8 小結 22 第 3 章 、試驗計劃與配置 31 3-1試驗土樣及其基本性質 31 3-2試驗儀器設備 32 3-2-1地工離心機與振動台 32 3-2-2振動台控制系統與資料擷取系統 33 3-2-3 固壁式試驗箱、積層版式試驗箱 33 3-2-4 壓電彎曲元件 34 3-2-5 各式感測器(加速度計、孔隙水壓計、LVDT) 36 3-2-6移動式霣降機 37 3-3試驗準備步驟與流程 38 3-3-1 試驗箱之準備與組立 38 3-3-2 土壤試體製作 38 3-3-3 土壤試體飽和 39 3-3-4 離心飛行前其餘準備工作 40 3-4試驗規劃與設計 40 第 4 章 、模型試驗及剪力波波速量測結果分析 59 4-1 以壓電彎曲元件於1g模型之先導試驗(D1-2D-71) 59 4-2以壓電彎曲元件於離心模型試體中量測剪力波波速 62 4-2-1 數位訊號濾波方法應用於壓電彎曲元件所量得之訊號 64 4-2-2 不同形式之固定端與量得訊號之優劣比較 65 4-2-3 覆土應力與剪力波波速之關係 67 4-2-4 壓電彎曲元件與加速度計量測微振動剪力波波速比較 69 4-3 量測之剪力波速與試體受振狀況之比較與應用 71 4-3-1 試體受振後,剪力波波速的變化 71 4-3-2 剪力波波速液化評估法之試驗結果 73 4-3-3 試體振動過程中以壓電彎曲元件量測剪力波波速的演化 75 第 5 章 、結論及建議 109 5-1 結論 109 5-2 建議 110 參考文獻 111 附錄A、壓電彎曲元件驅動器 114 A-1 運算放大器 114 A-2 驅動器電路 115 小結 116 附錄B、訊號處理方法及試驗軟體 118 B-1訊號處理基本概念 118 B-1-1離散訊號與取樣原理 118 B-1-2頻譜分析與濾波原理 120 B-2 類比輸出訊號程式 124 B-3圖形化使用者介面GUI 126 B-3-1 動態振動數據處理程式 127 B-3-2 動態遲滯圈數據處理程式 133

    1.Arulnathan, R., Boulanger, R. W., Kutter, B. L.,and Sluis, W. K., “New Tool for Shear Wave Velocity Measurements in Model Tests,” Geotechnical Testing Journal, GTJODJ, Vol. 23, No. 4, pp. 444–453 (2000).
    2.Arulnathan, R., Boulanger, R. W., Riemer, M. F., "Anslysis of Bender Element Tests," Geotechnical Testing Journal, GTJODJ, Vol. 21, NO. 2, pp. 120-464 (1998).
    3.Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France(1992).
    4.Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France(1993).
    5.Andrus, R. D. and Stokoe II, K. H., “Liquefaction Resistance of Soils from Shear-Wave Velocity,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, pp. 1015–1025 (2000).
    6.Brandenberg, S. J., Kutter, B. L., and Wilson, D. W., “Fast Stacking and Phase Corrections of Shear Wave Signals in a Noisy Environment,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 8, pp. 1015–1025 (2008).
    7.Brandenberg, S. J., Choi, S., Kutter, B. L., Wilson, D. W., and Santamarina, J. C., “A bender element system for measuring shear wave velocities in centrifuge models,” Proc., 6th Int. Conf. on Physical Modeling in Geotechnics, Hong Kong Univ. of Science and Technology, Hong Kong, pp. 165–170 (2006).
    8.Chen, H.T., C.J. Lee, and Chen, W.H., “The traveling pluviation appartus for sand specimen preparation,” Proceedings of the International Conference Centrifuge 98, Tokyo, pp.143-148 (1998) .
    9.Fu, L., Liu, G. and Zeng, X., “Evaluation of Shear Wave Velocity Based Soil Liquefaction Resistance Criteria by Centrifuge Tests,” Geotechnical Testing Journal- Online Version (2008).
    10.Fu, L., “Application of Piezoelectric Sensors in Soil Property Determination,” Ph.D. thesis, Case Western Reserve University (2004).
    11.Fu, L., Zeng, X., Figueroa, L. J., “Shear wave velocity measurement in centrifuge using bender element,” International Journal of Physical Modelling in Geotechics 2, pp. 01- 11(2004).
    12.Gohl, W.B. and Finn, W.D.L., “Seismic response of pile foundation in a centrifuge,” Prediction and Performance in Geotechnical Engineering, pp. 419-426 (1987).
    13.Gohl, W.B. and Finn, W.D.L., “Use of piezoceramic bender in soil dynamic testing,” Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics, Geotechnical Special Publication No. 29, K.B. Shobhaand W.B. Geoffrey, eds., pp. 118-133 (1991).
    14.Hardin, B.O., and Drnevich V. P., “Shear Modulus and Damping in Soils:Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
    15.Hardin, B.O. and Drenvich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692 (1972b).
    16.Hardin, B.O., and Black W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369 (1968).
    17.Kita, K., Shibata, T., Yashima, A., Kobayashi, S., "Measurment of Shear Wave Velocities of Sand in a Centrifuge," Soils and Foundations, Vol. 32 NO.2, 134-140, (1992).
    18.PVL Technologies, Inc.,Model LB-2814 Laminar Box Model Container for Geotechnical Centrifuge Model Testing(2008).
    19.李崇正,林志棟,林俊雄,「大地工程研究者之新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669 頁(1994)。
    20.陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
    21.黃香燕,「利用壓電晶片量測不同應力條件下之砂土波傳速度」,碩士論文,國立中央大學土木工程學系,中壢 (1998)。
    22.陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢 (1999)。
    23.龔東慶,歐章煜,「土壤小應變三軸試驗之發展與應用」,地工技術,第96期,第5-16頁(2003) 。
    24.王金山,「共振柱之土壤動力性質」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
    25.楊志偉,「內置式量測系統於多軸向震動台液化試驗之建構」,碩士論文,國立暨南國際大學地震與防災工程研究所,埔里(2006)。
    26.陳益成,「大型振動台飽和麥寮砂受振行為之研究」,碩士論文,國立臺灣大學土木工程學系,台北(2007) 。
    27.郭玉潔,「探討積層板試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢(2009) 。
    28.魏雨辰,洪汶宜,鄺柏軒,郭玉潔,江國輝,李崇正,「以離心模型試驗模擬均質砂土層之受振反應」,第十三屆大地工程研討會暨國科會成果發表會,宜蘭,台灣(2009)。
    29.鄺柏軒,「利用動態離心模型試驗探討砂土層受振時的剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢(2010) 。

    QR CODE
    :::