| 研究生: |
許銘家 Ming-Jia Hsu |
|---|---|
| 論文名稱: |
自動化辨識替代品-以某超商為例 Identifying Substitution items from transaction data |
| 指導教授: |
許秉瑜
Ping-Yu Hsu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 替代項目 、替代品 、關聯式規則 、負相關 |
| 外文關鍵詞: | Substitution items, Substitute goods, Association rules, Negative correlation |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在全球經濟競爭激烈的時代中,世界各國消費性商品逐漸全球化,消費者
必須快速且無時無刻都接受新的資訊,並且因為物價高漲以及商品複雜化,消
費者常常必須面臨到商品的選擇與替代,故對於消費者來說,可能面臨資訊超
載的問題。
故企業為了能夠節省消費者蒐集產品資訊時間,提高消費者對商品的滿意
度以及掌握消費者的購買習性,通常會建立商品的關聯性規則,利用關聯性規
則系統,可以針對消費者的偏好,找出可能的消費習慣以及購買組合,並且提
供合適的商品組合給消費者,以期待能提高消費者的購買意願,並且企業本身
能夠有效地管理商品的進貨、銷貨及存貨成本。傳統的關聯替代規則的探勘是
以找尋負向關聯法則為主要方法,由於傳統的關聯替代規則的探勘相當耗費資
源及時間,因此相關研究皆以改善運算效能並優化系統為主要目標。
本研究為具由前瞻性之自動化辨識商品替代關係的研究,僅利用傳統的關
聯替代規則加上經濟學替代品之公式,並且利用消費者行為模式切入來找尋不
同時節下,特殊替代商品以及可能的商品組合,試圖運用關聯規則由交易資料
庫中分析商品組合間之潛在關聯性,並透過不同的關聯性規則找出品項間差
異,試圖從大量的交易資料中萃取出可能的替代品組合。經由本研究探勘出的
可能替代品組合,將以相關係數中的負相關做為實證研究結果。而結果顯示,
利用關聯替代規則、經濟學替代品及消費者行為概念,所探勘之替代品有近七
成合於負相關之替代規則,顯示本研究具有一定準確性。
Abstruct
In the era of global economic highly competition, consumables of the world has gradually become the globalization. Consumers have to accept the new information fast all the time. Because of high prices and complicated products, consumers often have to face the choice of goods and substitution items. Consumers may face the problem of information overload.
Therefore, enterprises not only can save the time that consumers gather product but improve the satisfaction of the consumer goods and to equip consumers' purchasing habits. They usually establish the commodity association rules. Association rules can be used for consumer preferences and identify possible consumer habits and the purchase of the portfolio and provide the right combination of goods to the consumer to look forward to increasing consumer willingness to buy. And the enterprise itself can effectively manage commodity and inventory costs. The traditional association of alternative rules mining is to find negative correlation for the main method, and the traditional association exploration of alternative rules always be considered resources and time-consuming. Therefore, the research to begin with to improve the computing performance and optimize the system as the main target.
This visionary paper is only combination of traditional association rules and the formula of the economics of alternatives, then coupled with consumer behavior to find out the special of substitute goods and the possible combination of goods. Attempts to use the association rules from transaction database to analysis potential correlation between the combination of goods. And through a variety of association rules to find out the difference between items, and try to extract the portfolio of possible alternatives from the transaction data. In this paper, the mining out of the possible alternatives portfolio is be proved by the negative correlation in correlation coefficient.
The study showed that utilize the concept of association rules together with the alternatives in economic and the consumer behavior, nearly 70% of the substitutes were subject to the negative correlation alternative rules; hence, it shows that this study has certain accuracy.
參考文獻
1. Agrawal,R.and Srikant,R.(1994).「Fast Algorithms for Mining Association Rules」,Proceedings of the 20th Conference on Very Large Database, pp487- 499,Santiago,Chile.
2. Berry A.,M.J.,and Linoff G.(1997).Data Mining Technique Techniques for Marketing,Sales & Customer Support,N.Y.:Wiley Computer Publishing.
3. Druker,Peter F.(1973),Management:Tasks,Responsibilities , Practices,New York:Harper&Row,Inc.
4. Engel,J.F.,Kollat,D.T.,and Blackwell,R.D.(1982).Consumer Behaviors,4§•ed,Chicago:Dryden.
5. Fang K.(2000),Integrating Swot, Qfd, and Ahp For Group Information Systems Diagnosis ,Commerce & Management Quarterly,Vol.1,No.1,pp.17~38 .
6. Frawley W.J., Piatetsky-Shapiro G.,and Matheus C.J.(1991).Knowledge
discovery databases: An overview,in Knowledge Discovery in Databases(G.Piatetsky-Shapiro and W.J.Frawley,eds.),Cambridge,MA: AAAI/MIT,pp:1-27.
7. Grupe, F. H.and M. M. Owrang.(1995).Data mining discovering new knowledge and cooperative advantage,Information Systems Management, 12(4), 26-31.
8. Henry,A.(1995).Consumer Behavior and Marketing Action, Cincinnati,Ohio: South-Western College Publishing.
9. Han J., Kamber M.(2000).Data Mining: Concepts and Techniques.Morgan Kaufmann.
10. Marshall,A.(1890),Principlea of Economics, 8§• ed,London:Macmillan and Co., Ltd.
31
11. McFarlan,F.W.(1984,5-6).Information Technology Changes the Way You Compete.HarVard Business Review,98-103.
12. Parsons,G.L.(1983).Information Technology:A New Competitive Weapon. Sloan Management Review,Fall 3-14.
13. Porter,M.E.(1985).Competitive Advantage:Creating and Sustaining Superior Performance.N.Y.The Free Press.
14. Smith,A.(1973),The Wealth of Nations,New York:The Modern Libarry.
15. Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth.(1996).From Data
Mining to Knowledge Discovery in Databases,American Association for
Artificial Intelligence,AI Magazine, pp:37-54.
16. Veblen, T. B.(1899),The Theory of the Leisure Class. An Economic Study of
Institutions. London: Macmillan Publishers.
17. Walters,C.G..,and Paul,W.G..(1970).Comsumer behavior,an integrated
framework,Homewood,I11,R.D.Irwin Inc.
18. Wilkie,William L.(1994).Consumer behavior,3¶$ed,New York:John
Wiley&Sons,Inc.
19. Teng, W.G., Hsieh M.J.,and Chen M.S.(2005) ,“A statistical framework for
mining substitution rules”,KnowledgeandInformationSystems (2005)7,158– 178
32
中文部份
1. United States Census Bureau (2012),http://www.census.gov/
2. Richard Vaughn(1980),FCB 方格,Foote Cone & Belding
(博達大橋廣告公司) http://wiki.mbalib.com/wiki/FCB
3. 范銘雄(2010),運用資料探勘之關聯法則探討專案執行績效與專案特性之關
聯性研究,國立中央大學營建管理研究所碩士論文。
4. 李津玲(2005),綜合商品零售業教育訓練規劃之探討,國立中央大學企業管理
學系碩士在職專班碩士論文。
5. 楊雲明(2007),個體經濟學(Microeconomics),智勝文化事業有限公司。
6. 林建煌(2007),消費者行為二版,華泰文化事業股份有限公司。
7. 林建煌(2009),行銷管理四版,華泰文化事業股份有限公司。
8. 經濟部商業司(2010),商業服務業年鑑(2010),中華民國經濟部。
9. 吳立民(2011),國際商情雙周刊第 326 期,中華民國對外貿易發展協會。
10. 中華民國行政院統計處(2012),http://www.stat.gov.tw/mp.asp?mp=4
11. 行政院陸委會(2012),http://www.mac.gov.tw/welcome01/welcome01.htm
12. 中國大陸國家統計局(2012),http://www.stats.gov.cn/
13. 高盛證卷(2012),http://www.goldmansachs.com/
14. 東亞證券(2012),美國零售類股再創歷史新高,2012/3/3,取自鉅亨網電子
報 http://www.cnyes.com/