| 研究生: |
陳治平 Chih-Ping Chen |
|---|---|
| 論文名稱: |
Remote Control of Hydrogen Bond Strengths inDonor-Bridge-Acceptor Systems :(a) The Effects of Metalation on the Three-Component Systems.(b) Two-way Remote Control of the Strengths of Hydrogen Bonds. |
| 指導教授: |
蔡惠旭
Hui-Hsu Gavin Tsai 趙奕姼 Ito Chao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 氫鍵 、吡啶 、超分子化學 、分子內電荷轉移 |
| 外文關鍵詞: | intramolecular charge transfer, supramolecular chemistry, tetrathiafulvalene(TTF), phosphinine, pyridine, hydrogen bond |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗室設計了一個D-B-A的三元件系統(three-component system)來達成遠距離調控氫鍵強度的目的。所謂的三元件系統包含了氫鍵鍵結中心(hydrogen-bonding center)、反應中心(reaction center)和連結前面兩者的π共軛架橋(π-conjugated bridge),當對反應中心進行質子化、金屬化、氧化等作用時,可誘發三元件系統的分子內電荷轉移,因而改變在遠端氫鍵的鍵結能力。本論文在三元件系統的架構之下分為兩個研究主題,第一部份我們研究在不同的金屬化反應的作用下,對於三元件系統調控氫鍵之影響,我們討論了使用pyridine與phosphinine配位基作為反應中心的雙芽基金屬化系統,以及拉電子基對其之影響,最後我們也研究了三芽基金屬化系統。第二部份我們設計了一個雙方向氫鍵調控系統,是藉著在反應中心TTF(tetrathiafulvalene)的反式位向上連接出兩條相異的π共軛架橋的方式來達成兩個方向的氫鍵鍵結中心在氫鍵鍵能的表現上有不同強度的呈現,並藉著替換不同的π共軛架橋的方式,讓整個雙方向氫鍵調控系統在不同的氧化還原狀態下,氫鍵鍵能強端與弱端的順序能夠互換。
A three-component system (D-B-A system), consisting of a hydrogen bonding site (electron donor), a conjugated bridge and a reaction center (electron acceptor), is used to modulate the strength of hydrogen bonding. By altering the charge state of the reaction center, intramolecular charge transfer can be triggered and thus the binding ability of the hydrogen bonding site is modulated. Under the three-component system framework, we have studied two topics. The first one is the effects of metalation on the three-component systems. Both bidentate and tridentate metalation systems, which are constituted by pyridine- and phosphinine-containing ligands, have been examined. The second topic is to design a system in which two different types of π-conjugated bridges are attached to a TTF reaction center to achieve two-way remote control of the strengths of hydrogen bonds. Depending on the oxidation state of TTF, the strong hydrogen bonding site and the weak hydrogen bonding site can be exchanged.
[1]. Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, 1995.
[2]. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; J. Wiley & Sons: New York, 2000.
[3]. Gellman, S. H. Ed., Special Issue on Molecular Recognition, Chem. Rev. 1997, 97, 1231.
[4]. Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.
[5]. Haupt, K.; Mosbach, K. Chem. Rev. 2000, 100, 2495.
[6]. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Radamacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
[7]. Feringa, B. L. Molecular Switches, Wiley-VCH: Weinheim, 2001.
[8]. Raymo, F. M. Adv. Mater. 2002, 14, 401.
[9]. de Silva, A. P.; McClenaghan, N. D. Chem. Eur. J. 2004, 10, 574.
[10]. Fabrizzi, L.; Licchelli M.; Pallavicini P. Acc.Chem. Res. 1999, 32, 846.
[11]. Imahori, H. J. Mater. Chem. 2007, 17, 31.
[12]. Imahori, H.; Fukuzumi, S. Adv. Funct. Mater. 2004, 14, 525.
[13]. Baitalik, S.; Wang, X. Y.; Schmehl, R. H. J. Am. Chem. Soc. 2004, 126, 16304.
[14]. 非共價作用力包括:氫鍵(hydrogen bonding)、π-π stacking、陽離子−π (cation-π)、金屬-配位基(metal-ligand)、靜電作用力(electrostatic forces)……等。
[15]. Mueller-Dethlefs, K.; Hobza, P. Chem. Rev. 2000, 100, 143.
[16]. Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: New York, 1991.
[17]. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond, Oxford University Press: New York, 1999.
[18]. Cooke, G.; Rotello, V. M. Chem. Soc. Rev. 2002, 31, 275.
[19]. Shimizu, L. S.; Hughes, A. D.; Smith, M. D.; Davis, M. J.; Zhang, B. P.; zur Loye, H.-C.; Shimizu, K. D. J. Am. Chem. Soc. 2003, 125, 14972.
[20]. Demers, E.; Maris, T.; Wuest, J. D. Crystal Growth & Design 2005, 5, 1227.
[21]. Kim, K. S.; Suh, S. B.; Kim, J. C.; Hong, B. H.; Lee, E. C.; Yun, S.; Tarakeshwar, P.; Lee, J. Y.; Kim,Y.; Ihm, H.; Kim, H. G.; Lee, J. W.; Kim, J. K.; Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Jeong, S.; Cho, J.-H. J. Am. Chem. Soc. 2002, 124, 14268.
[22]. Hirschberg, J. H. K. K.; Brunsveid, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. J. Nature 2000, 407, 167.
[23]. Söntjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 7487.
[24]. Sekiya, R.; Nishikiori, S. I. Chem. Commun. 2001, 2612.
[25]. Chao, I.; Hwang, T.-S. Angew. Chem. Int. Ed. 2001, 40, 2703.
[26]. Hwang, T.-S.; Juan, N.; Chen, H.-Y.; Chen, C.-C.; Lo, S.-J.; Chao, I. Chem. Eur. J. 2004, 10, 1616.
[27]. Lo, S.-J.; Li, W.-S.; Chen, Y.-H.; Chao, I. Chem. Eur. J. 2005, 11, 6533.
[28]. Mizuno, T.; Wei, W.-H.; Eller, L. R.; Sessler, J. L. J. Am. Chem. Soc. 2002, 124,
1134.
[29]. Anzenbacher, P. Jr.; Tayson, D. S.; Jursíková, K.; Castellano, F. N. J. Am. Chem. Soc. 2002, 124, 6232.
[30]. Le Floch, P.; Mathey, F. Coord. Chem. Rev. 1998, 771.
[31]. Le Floch, P. Coord. Chem. Rev. 2006, 250, 627.
[32]. Nyulàszi, L. Chem. Rev. 2001, 101, 1229.
[33]. Mathey, F. Angew. Chem. Int. Ed. 2003, 42, 1578.
[34]. Bendikov, M; Wudl, F; Perepichka, D. F. Chem. Rev. 2004, 104, 4891.
[35]. Jeppesen, J. O.; Brøndsted Nielsen, M.; Becher, J. Chem. Rev. 2004, 104, 5115.
[36]. Jørgensen, T.; Hansen, T. K.; Becher, J. Chem. Soc. Rev. 1994, 23, 41.
[37]. Segura, J. L.; Martín, N. Angew. Chem. Int. Ed. 2001, 40,1372.
[38]. Märkl, G.. Angew. Chem. Int. Ed. Engl. 1966, 5, 846.
[39]. Ashe, A. J., III J. Am. Chem. Soc. 1971, 93, 3293.
[40]. Wong, T. C.; Bartell, L. S. J. Chem. Phys. 1974, 61, 2840.
[41]. Baldridge, K. K.; Gordon, M. S. J. Am. Chem. Soc. 1988, 110, 4204.
[42]. George, P.; Bock, C. W.; Trachtman, M. Tetrahedron Lett. 1985, 26, 5667.
[43]. Waluk, J.; Klein, H.-P.; Ashe III, A. J.; Michi, J. Organometallics 1989, 8, 2804.
[44]. Hodges, R. V.; Beauchamp, J. L.; Ashe III, A. J.; Chan, W.-T. Organometallics 1985, 4, 457.
[45]. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
[46]. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
[47]. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
[48]. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.
[49]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M .A.; Cheeseman, J. R.; Montgomery, J. A.; Jr. Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, Revision A. 1, Gaussian, Inc., Pittsburgh PA, 2003.
[50]. Li, W. Q.; Tian, W. Q.; Feng, J. K.; Liu, Z. Z. Eur. J. Org. Chem. 2007, 1669.
[51]. Lambert, T. L.; Ferraris, J. P. Chem. Commun. 1991, 752.
[52]. Bredas, J. L. J. Chem. Phys. 1985, 82, 3808.
[53]. Wudl, F.; Smith, G. M.; Hufnagel, E. J. Chem. Commun. 1970, 1453.
[54]. Wudl, F.; Wobschall, D.; Hufnagel, E. J. J. Am. Chem. Soc. 1972, 94, 670.
[55]. Zhou, Y.; Wu, H.; Qu, L.; Zhang, D.; Zhu, D. J. Phys. Chem. B 2006, 110, 15676.
[56]. Guldi, D. M. J. Org. Chem. 2000, 65, 1978.
[57]. Atienza, C. M.; Fernández, G.; Sánchez, L.; Martín, N.; Wienk, M. M.; Sá Dantas, I.; Janssen, R. A. J.; Rahman, G. M. A.; Guldi, D. M. Chem. Commun. 2006, 514.
[58]. Li, H.; Jeppesen, J. O.; Levillain E.; Becher, B. Chem. Commun. 2003, 846.
[59]. Xiao, X. W.; Xu, W.; Zhang, D. Q.; Xu, H.; Lu, H. Y.; Zhu, D. B. J. Mater. Chem. 2005, 15, 2557.
[60]. Martín, N.; SaÂnchez, L.; Herranz, M. A.; Guldi, D. M. J. Phys. Chem. A 2000, 104, 4648.
[61]. Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. Res. 2001, 34, 433.
[62]. Baumgartner, T.; Reau, R. Chem. Rev. 2006, 106, 4681.
[63]. Webster, O. W. J. Am. Chem. Soc. 1964, 86, 2898.
[64]. Yamaguchi, S.; Tamao, K. Chem. Lett. 2005, 34, 2.