| 研究生: |
賴柏辰 Po-Chen Lai |
|---|---|
| 論文名稱: |
條紋式半極化(1-101)氮化鎵/氮化銦鎵藍光發光二極體特性研究 Characterization of Multi-stripes Semi-polar(1-101) GaN/InGaN Light Emitting Diodes |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 半極化 、(1-101) 、氮化鎵 、發光二極體 |
| 外文關鍵詞: | semi-polar, (1-101), GaN, Light Emitting Diode |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中係在矽基板上製作V型凹槽並成長具有半極化(1-101)面的氮化鎵/氮化銦鎵發光二極體結構,將其製作成元件。因為具有半極化(1-101)面的量子井發光二極體結構具有較小的反向極化電場,模擬分析以及量測結果顯示,此結構能夠改善效率衰退(Efficiency droop)的問題,與一般極化(0001) 發光二極體比較,前者之效率衰退的比例僅有11.52 %,而後者則高達52.1 %。然而長條紋島狀結構容易在接合處引發非(1-101)的傾斜晶格面,產生大量的錯誤堆疊以及缺陷,使得在接合處的銦分布不均勻,造成發光不均勻和強度下降。為了將發光效率提高以及改善發光純度問題,本研究提出了一種新結構的設計,於傾斜7°(001)矽圖形化基板上成長半極化(1-101)氮化鎵材料時,不讓最初的氮化鎵條紋島狀結構接合,而是在條紋島上成長為具有多層量子井的獨立長條紋島狀發光二極體結構。此新結構不僅免除了長條紋島狀結構因接合產生的應力而龜裂,和傳統接合式的半極化發光二極體相比,PL的半高寬從44.3 nm降到35.9 nm,最重要的是大幅提升了1x1 mm2的元件在350 mA下的發光強度達66.7 %,使得半極化(1-101)發光二極體有了更好的光電特性。此方法不僅改善了效率衰退的問題,更提升了自身的光電特性,提供一個發光二極體未來發展的方向。
In this thesis, semi-polar (1-101) GaN / InGaN LEDs was fabricated on v-groove Si (001) substrates and processed to devices. Semi-polar (1-101) plane GaN can improve efficiency droop due to the weak reverse polarization field which can be observed by simulation tools. The efficiency droop ratios of polar and semi-polar LEDs are 52.1% and 11.52% respectively. However the amount of inclination was increased at higher indium content. Inclining is caused by the vest of existence of stacking faults or defects at InGaN/GaN interface on the coalescence region. Therefore, this inclination will affect the In fluctuation and decrease the light output power. In order to improve the light emission efficiency and purity problems, this study proposes a new structural design. It is called multi-stripes structure, consists of n-GaN layer without coalescence, an active region composed of InGaN/GaN quantum well cover the triangle surface, and p-GaN layer make coalescence layer of each stripe. This new structure not only eliminates cracking caused by stress, but also has a great improvement compares with coalescence structure. The photoluminescence shows FWHM dropped from 44.3 nm 35.9 nm and the output power enhanced up to 66.7% (1x1 mm2 device at 350 mA). It shows semi-polar (1-101) light-emitting diodes have a better optical property.
This study proposes a new structure - "multi-stripe semi-polar (1-101) GaN light-emitting diodes." The new structure not only improves the efficiency droop problem but also enhances the optical characteristics, which provides a modern direction of LEDs development.
[1] Chin-Chi Wu, 成長於矽基板之半極化氮化鎵磊晶層特性研究,國立中央大學碩士論文(2009)
[2] Hsien-Yu Lin, Characterization of GaN and InGaN Grown on Patterned 7o-off (001) Si Substrate,國立中央大學碩士論文(2011)
[3] D. G. Zhao, S. J. Xu,a) M. H. Xie, and S. Y. Tong, Appl. Phys. Lett. 83, 4 (2003).
[4] Semiconductor Technology Research, Inc. Simulator of Light Emitters based on Nitride Semiconductors (SiLENSe)
[5] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).
[6] A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun,S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M.
Steranka, Phys. Status Solidi A 188, 15 (2001).
[7] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
[8] M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, Appl. Phys. Lett. 94, 041103 (2009).
[9] I. V. Rozhansky and D. A. Zakheim, Phys. Status Solidi A 204, 227 (2007).
[10] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger,M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).
[11] Y. J. Sun, O. Brandt, S. Cronenberg, S. Dhar, H. T. Grahn, K. H. Ploog, P. Waltereit, and J. S. Speck, Phys. Rev. B 67, 041306 (2003).
[12] H. M. Ng, Appl. Phys. Lett. 80, 4369 (2002).
[13] H. M. Ng, A. Bell, F. A. Ponce, and S. N. G. Chu, Appl. Phys. Lett. 83, 653 (2003).
[14] M. D. Craven, P. Waltereit, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett. 84, 496 (2004).
[15] Yoshio Honda, NorifumiKameshiro, Masahito Yamaguchi, Nobuhiko Sawaki, J. Cryst. Growth 242 82-86 (2002).
[16] T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, phys. stat. sol. (c), 1-4 (2008).
[17] J.S. Speck and S.F. Chichibu, Guest Editors, MRS BULLETIN • VOLUME 34 • MAY (2009).
[18] M. Kubota, K. Okamoto, T. Tanaka, and H. Ohta, Appl. Phys. Lett. 92, 011920 (2008).
[19] H. Masui, H. Yamada, K. Iso, J. S. Speck, S. Nakamura, and S. P. Den-Baars, J. Soc. Inf. Disp. 16, 571 (2008).
[20] S. Tripathy, V. K. X. Lin, S. L. Teo, A. Dadgar, A. Diez, J. Bläsing, and A. Krost, Appl. Phys. Lett. 91, 231109 (2007).
[21] Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[22] Landolt-Börnstein, III/41 A1a (Springer, Berlin/Heidelberg/New York, 2001)
[23] R. Hull, Properties of crystalline silicon, (EMIS datareview series No. 20, 1999).
[24] M. S. Shur and M. A. Khan, Mater. Res. Bull. 22, 44 (1997).
[25] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).
[26] E. K. Sichel and J. I. Pankove, J. Phys. Chem. Solids 38, 330 (1977).
[27] Landolt-Börnstein, Vol. 17 (Spinger, New York, 1992).
[28] Madelung, Semiconductors Group IV and III-V compounds (Spinger, Berlin, 1991).
[29] Yoshio Honda, Norifumi Kameshiro, Masahito Yamaguchi, and Nobuhiko Sawaki,“Growth of (1-101) GaN on a 7-degree off-oriented (001)Si substrate by selective MOVPE”,J. Cryst. Growth 242, 82 (2002)
[30] Baoshun Zhang, Hu Liang, Yong Wang, Zhihong Feng, Kar Wei Ng, and Kei May Lau,“High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates”, J.Cryst. Growth 298, 725 (2007)
[31] Shigeyasu Tanaka, Yoshio Honda, Nobuhiko Sawaki, and Michio Hibino, “Structuralcharacterization of GaN laterally overgrown on a (111)Si substrate”, Appl. Phys. Lett. 79, 955(2001)
[32] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T.Riemann, J. Christen, and A. Krost, “Maskless epitaxial lateral overgrowth of GaN layers onstructured Si(111) substrates”, Appl. Phys. Lett. 78, 727 (2001)
[33] K.Y. Zang, Y.D. Wang, L.S. Wang, S. Tripathy, S.J. Chua, and C.V. Thompson,“Nanoheteroepitaxy of GaN on a nanopore array of Si(111) surface”, Thin Solid Films 515,4505 (2007)
[34] Guan-Ting Chen, Jen-Inn Chyi, Chia-Hua Chan, Chia-Hung Hou, Chii-Chang Chen, andMao-Nan Chang, “Crack-free GaN grown on AlGaN/(111)Si micropillar array fabricated bypolystyrene microsphere lithography”, Appl. Phys. Lett. 91, 261910 (2007)
[35]T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Strain relaxation in thick (1-101) InGaN grown on GaN/Si substrate” physical status solidi (b), 3, 468 (2012).