| 研究生: |
楊峻豪 Jyun-hao Yang |
|---|---|
| 論文名稱: |
利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池 A novel fabrication of Al back surface fields for crystalline silicon solar cells |
| 指導教授: |
陳一塵
I-chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 矽 、鈍化射極背表面接觸 、隨機鋁背表面電場 、表面鈍化 |
| 外文關鍵詞: | Si, PERC, Random Al BSF, Surface passivation |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本項研究中,為了降低製作局部背表面電場成本,我們提出以簡單新穎的製程方式製作局部背表面電場運用在結晶矽太陽能電池中。背表面鈍化層是使用SiOxNy和SiNx雙層堆疊結構,利用高分子薄膜製作出微米孔洞圖形遮罩,並製備局部背表面鈍化層,運用於電池中,製備出隨機局部鋁背表面電場 (Random local Al back surface field)太陽能電池,探討其不同背表面接觸面積之少數載子生命週期變化和太陽能電池光電轉換特性。
本研究將針對不同孔洞接觸面積變化探討對於電池效率之影響,且電極接觸形狀與鋁背表面電場厚度有強烈的關係,後續並探討剝除局部介電層和接觸面積之關係。本實驗顯示,局部背表面電場能有效的改善載子生命週期,當孔洞接觸面積愈多時,表面鈍化層移除則愈多,有效少數載子生命週期則愈低,當孔洞接觸面積達到百分之四十以上,其有效載子生命週期與整面表面電場幾乎相同。其電池背表面孔洞接觸面積為7.3 %時有最佳光電轉換效率之表現,電池面積為10 mm × 10 mm,製備於p-type單晶矽基板轉換效率可達到13.43 %,比較背面未鈍化,整面背表面電場參考樣品中轉換效率為12.81 %,可看出其光電轉換效率有顯卓的提升。
本研究中,在最佳化隨機鋁局部背表面電場比較整面背表面電場,可觀察出明顯的改善Voc和Jsc,分別提升6.8 mV和2.22 mA,此提升是因為良好背表面內反射和背表面鈍化產生之結果。
In this work, in order to reduction cost of local back surface field, we propose a simple and novel process was developed for fabrication of local Al back surface field (BSF) for crystalline Si solar cells. Where a stack of SixONy and SiNx is used as rear surface passivation layer containing holes. Random local Al BSF solar cells with microhole patterned dielectric layers as rear surface passivation have been prepared. A detailed investigation of the effect of local holes contact area on the conversion efficiency of the PERC cells was performed.
The effect of rear contact formation on cell efficiency was studied as a function of contact area, hence the metallization fraction. Contact shape and the thickness of Al-BSF layer were found to be heavily dependent on the etch ablation pattern and contact area. When the holes area fraction was higher, the fraction of the passivation film removed was higher and as a consequence, the effective lifetime was smaller. It is shown that the rear surface passivation could effectively increase the lifetime and the cell with around 7.3 % hole area fraction can have best performance. Conversion efficiency of 13.43% was achieved using 10×10 mm, p-type single crystalline silicon wafers. This is a significant improvement when compared to unpassivated, full area aluminum back surface field solar cells, which exhibit only 12.81 % conversion efficiency on the same wafer type.
There is an apparent gain in Jsc and Voc of, respectively, 2.22 mA/cm2 and 6.8 mV for the best random Al BSF cells compared to full Al BSF reference cells, because of better rear internal reflection and rear surface passivation.
[1] Muramatsu, S., et al., Effect of hydrogen radical annealing on SiN passive solar cells. Solar Energy Materials and Solar Cells. 65, p. 599-606, 2001.
[2] Lee, Y., et al., Stability of SiNX /SiNX double stack antireflection coating for single crystalline silicon solar cells. Nanoscale Research Letters, 7, p.1-6. 2012.
[3] Dauwe, S., et al., Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in photovoltaics, 10, p. 271-278, 2002.
[4] Salemi, S., et al., The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface. Journal of Applied Physics, 2013.
[5] Chang, L.S., P.L. Gendler, and J.H. Jou, Thermal, mechanical and chemical effects in the degradation of the plasma-deposited alpha-rich passivation layer in a multilayer thin-film device. Journal of Materials Science, 26, p. 1882- 1890,1999.
[6] Jang, J.H. and K.S. Lim, Post hydrogen treatment effects of boron-doped a-SiC:H p-layer of a-Si:H solar cell using a mercury-sensitized photo-chemical vapor deposition method. Japanese journal of applied physics part 1-regular papers short notes & review papers, 36, p. 6230-6236, 1997.
[7] Sepeai S., et al., Surface passivation studies on n+pp+ bifacial solar cell. International Journal of Photoenergy,10, p. 1155- 1162, 2012.
[8] J Del Alamo, J Van Meerbergen, F d'Hoore, J Nijs, High-low junctions for solar cell applications. Solid-State Electronics, 24, p. 533-538, 1980.
[9] Michael P. Godlewski, Cosmo R. Baraona, Henry W, Low-high junction theory applied to solar cells, 10th Photovoltaic Specialists' Conf, IEEE, 29, p. 131-150, 1990.
[10] Aberle AG, Altermatt PP, Heiser G, Robinson SJ, Wang A, Zhao J, Krumbein U, Green MA. Limiting loss mechanisms in 23% efficient silicon solar cells. Journal of Applied Physics , 77, p. 3491-3507,1995.
[11] B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti, A. Rothschild, J. John, J. Poortmans, and R. Mertens, Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si Solar Cells, Solar Energy Materials and Solar Cells,101, p. 204-209, 2012.
[12] Sheppard, P.A., Handbook of Geophysics. Geophysical journal of the royal astronomical Society, p. 476-478.1960.
[13] S. O. Kasap, Optoelectronics and Photonics Principles and Practices Prentice -Hall, ed. 1.0, 2001.
[14] D. A. Neamen, Semiconductor Physics and devices: basic principles, mcGraw-hill, 2003.
[15] H. Hoppe , N. S. Sariciftci, Organic solar cells, journal of materials research 19, 1924- 1945, 2004.
[16] B. Fischer, Loss analysis of crystalline silicon solar cells using photo- conductance and quantum efficiency measurements, Ph.D Thesis, University of Konstanz , 2003.
[17] Schimpe, R., Theory of reflection at the facet of a semiconductor-laser. Aeu-Archiv Fur elektronik und ubertragungstechnik- International Journal of Electronics and Communications, 46, p. 80-85, 1992.
[18] P. A. Basore, Extended Spectral Analysis of Internal Quantum Efficiency, Proceedings 23rd IEEE PVSC, p.147- 152, 1993.
[19] A. Rohatgi, Z. Chen, P. Doshi, T. Pham, and D. Ruby, High-efficiency silicon solar cells by rapid thermal processing, Appl. Phys. Lett. 65, 2087 (1994).
[20] G. Santana, A. Morales-Acevedo, and L. Hernandez, Gettering effects by aluminum upon the dark and illuminated I-V characteristics of N+-P-P+ silicon solar cells, Sol. Energy mater. sol. Cells, 62, p. 1299-1302 , 2000.
[21] Park S, Bae S, Kim H, Kim S, Do Kim Y, Park H, Kim S, Tark SJ, Son CS, Kim D, Effects of controllable process factors on Al rear surface bumps in Si solar cells, Current Applied Physics,12, p. 17-22, 2012.
[22] J. Krause, R. Woehl, M. Rauer, C. Schmiga, J. Wilde, and D. Biro, Microstructural and electrical properties of different-sized aluminum-alloyed contacts and their layer system on silicon surfaces," Solar Energy Materials and Solar Cells, 95, p. 2151-2160, 2011.
[23] Meemongkolkiat V, Nakayashiki K, KIM D S, et al. Factors limiting the formation of uniform and thick aluminum–back-surface field and its potential. Journal of the Electro- Chemical Society, 153, p. 53-58, 2006.
[24] Zhao J, Wang A, Green MA, High efficiency PERL silicon solar cells on FZ and M CZ substrates Technical digest of the 11th International Photovoltaic Science and Engineering Conference, 65, p. 429- 435, 2001.
[25] Wang A, Zhao J, Green MA, 24% efficient silicon solar cells, Applied physics letters; 2, p. 1477- 1480, 1994.
[26] Blakers AW, Wang A, Milne AM, Zhao J, Green MA. High efficient silicon solar cells. Applied Physics Letters,6 , p. 427-484, 1990.
[27] E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, Silicon diffusion in aluminum for rear passivated solar cells, Journal of Applied Physics, 98, p. 673- 683, 2011.
[28] H. Plagwitz, , R. Brendel, Analytical model for the diode saturation current of point-contact solar cells, Prog. Photovolt, 14, p.1–12, 2006.
[29] S.M. Yang , J. Plá, Optimization of the back contact in c-Si solar cells, Solid-State Electronics, 53, p. 925–930, 2009.
[30] H. Plagwitz, M. Schaper, J. Schmidt, B. Terheiden, R. Brendel. Analytical model for the optimization of locally contacted solar cells, Photovoltaic Specialists Conference, 31, p.679- 683, 2005.
[31] K. Wijekoon, F. Yan, Y. Zheng, D. Wang, H. Mungekar, L. Zhang, H. Ponnekanti, Optimization of rear local contacts on high efficiency PERC solar cells structures, International Journal of Photo Energy, 2013.
[32] D. Niinobe , H. Morikawa, S. Hiza, T. Sato, S. Matsuno, H. Fujioka, T. Katsura, T. Okamoto, S. Hamamoto, T. Ishihara, S. Arimoto, Large-size multi-crystalline silicon solar cells with honeycomb textured surface and point-contacted rear to ward industrial production, Solar energy materials and solar Cells, 95, p. 49-52, 2011.
[33] J. Müller, K. Bothe, S. Gatz, F. Haase, C. Mader, and R. Brendel, Recombination at laser-processed local base contacts by dynamic infrared lifetime mapping, Journal of Applied Physics, 108,p. 1- 6, 2010
[34] S. Gatz, K. Bothe, J. Müller, T. Dullweber, R. Brendel, Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells, Energy procedia, 8, p. 318-323, 2011.
[35] M. Moors, K. Baert, T. Caremans, F. Duerinckx, A. Cacciato, J. Szlufcik, Industrial PERL-type solar cells exceeding 19% with screen-printed contacts and homogeneous emitter, Solar energy materials and solar cells, 106, p. 84–88, 2012.
[36] N. Balaji, C. Park, Y. Lee, S. Jung, J. Yi, Rear-side passivation characteristics of Si-rich SiNx for various Local Back Contact solar cells, Vacuum , 96 , p. 69 -72, 2013.
[37] M. wolf, H. Rauschenbach, advanced energy conversion, 3, p. 455-479, 1963.
[38] A. B. Sproul, M. A. Green, and A. W. Stephens, Accurate determination of minority carrier- and lattice scattering-mobility in silicon from photo-conductance decay, J. Appl. Phys 72, p. 4161-4171, 1992.
[39] A. G. Aberle, Crystalline silicon solar cells: advanced surface passivation and analysis, University of New South Wales, Sydney NSW 2052, 1999.
[40] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers, 2002.
[41] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. 2006.
[42] M. A. Green, Solar cells: Operating principles, technology, and system applications, Englewood Cliffs, NJ, Prentice-hall, Inc. 1982.
[43] M. S. Tyagi and R. V. Overstraeten, Minority carrier recombination in heavily doped silicon, Solid-St.Electron. 26, p.577- 597 , 1983.
[44] M. J. Kerr and A. Cuevas, General parameterization of Auger recombination in crystalline silicon, J. Appl. Phys. 91,p. 97-104 , 2002.
[45] W. Shockley and W. Read, Statistics of the Recombination of holes and electrons, Phys. Rev. 87, p.835- 842 , 1952.
[46] R. Hall, Electron-Hole Recombination in Germanium, Phys. Rev. 87, p. 387-387, 1952.
[47] M. A. Green, High Efficiency Silicon Solar Cells, Trans tech publications , p. 427-484, 1990.
[48] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons Inc, 2003.
[49] A. R. Beattie and P. T. Landsberg, Auger effect in Semiconductors, Proc. R. Soc. 249, p. 16- 20, 1959.
[50] J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett. 31, p. 346-348, 1977.
[51] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden, and W.M.M. Kessels, Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3, Prog. Photovolt. 16, p. 461- 466, 2008.
[52] S. Gatz, K. Bothe, J. Müller, T. Dullweber, R. Brendel, Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells, Energy Procedia,8, p. 318- 323, 2011.
[53] J. Mandelkorn, J. H. Lamneck, Jr., Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells, in Proc. 9th IEEE Photovoltaic Spec. Conf., IEEE, New York, 66,1972.
[54] M. Wolf, Drift fields in photovoltaic solar energy converter cells, in Proc. Of the IEEE 51, 674-693, 1963.
[55] P. L. Lölgen, Surface and volume recombination in silicon solar cells, PhD Thesis, Universiteit Utrecht,1995.
[56] J. del Alamo, J. Eguren, and A. Luque, Operating limits of Al-alloyed high-low junctions for BSF solar cells, Solid-St. Electron. 24, p.415- 420,1981.
[57] J. Mandelkorn and J. H. Lamneck Jr., A new electric field effect in silicon solar cells, J. Appl. Phys. 44, p. 4785-4790, 1973.
[58] J. Mandelkorn, J. H. Lamneck, Jr., Advances in the theory and application of BSF cells, in Proc. of 11th Photovoltaic Specialists Conference,5, p.6- 8, 1975.
[59] H.B. Xu, R.J. Hong, B. Ai, L. Zhuang, H. Shen , Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells, Applied Energy 87, p. 3425– 3430, 2010.
[60] SM Joshi, UM Gösele, TY Tan, Improvement of minority carrier diffusion length in Si by Al gettering, J. Appl. Phys. 77 ,p. 3853-3863, 1995.
[61] J.L. Murray,A. J. McAllster, The Al–Si(Aluminum–silicon)system, Bull. Alloy Phase Diagrams,1, p. 74–84, 1984.
[62] J. Delalamo, J. Eguren, A. Luque, Operating Limits of al-alloyed high-low junctions for bsf solar cells. Solid-State Electrics, 24. pp. 415- 420, 1981.
[63] F.Huster, Investigation of the alloying process of screen printed aluminum pastes for the BSF formation on silicon solar cells, Proceedings of the 20th European Photovoltaic Solar Energy Conference,, p. 1466–1469, 2005.
[64] F.S. Grasso, L. Gautero, Jochen Rentsch, Ralf Preu, R. Lanzafame. Characterisation of location al-bsf formation for PERC solar cell structure, 25th European photovoltaic Solar Energy Conference, p.371- 374, 2010.
[65] K. D-Veress1, J. R. Dutcher and J. A. Forrest, Dynamics and Pattern Formation in Thin Polymer Films, physics in Canada, 2003.
[66] S. Herminghaus, K. Jacobs, K. R. Mecke, Thin liquid polymer films rupture via defects, Langmuir, Vol. 14, No. 4, 1998.
[67] C. Neto, K. Jacobs, Dynamics of hole growth in dewetting polystyrene films. Physica, 339, p. 66 – 71, 2004.
[68] J. Y. Song, S. Park, Y. D. Kim, M. G. Kang, S. J. Tark, S. Kwon, S. Y, and D. Kim, Aluminum fire-through with different types of the rear passivation layers in crystalline Silicon Solar Cells, Met. Mater. Int, 18, p. 699-703, (2012).