| 研究生: |
徐維政 Wei-Jeng Hsu |
|---|---|
| 論文名稱: |
改良式變異向量分析法於變遷偵測之探討 Application of Improved Change-Vector Analysis for Land Cover Change Detecton |
| 指導教授: |
陳繼藩
Chi-Farn Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 變異向量分析法 、變遷偵測 |
| 外文關鍵詞: | change vector analysis, change detection |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統應用變異向量分析法(CVA:Change Vector Analysis)分析影像之變遷,基本上變遷向量門檻值的指定往往必須使用試誤法或經驗法則決定,導致變遷偵測的結果不夠客觀,因此本研究採用改良式變異向量分析法,自動化地指定差異影像之門檻值,以改善傳統變異向量分析法指定差異影像門檻值不客觀之問題。改良式變異向量分析法進行影像變遷分析主要有兩個步驟:(1)在偵測影像變遷像元位置方面,利用變遷先驗樣區輔助指定變遷向量之最佳門檻,且採用逐步搜尋法以及三次式極值法自動化地找出變遷向量之最佳門檻, (2)在判斷變遷像元型態方面,於前、後時期影像上圈選地物訓練區,以得到變異向量方向餘弦樣本,然後利用變異向量方向餘弦樣本決定每個變遷像元之變遷型態。由一組模擬影像以及兩組真實衛星影像的測試結果,可以得知:使用改良式變異向量分析法進行衛星影像變遷偵測的精確度在偵測變遷像元之精確度可達85%以上,判斷變遷像元型態之精確度也在82%以上,而且操作的過程也相當自動化,因此在土地變遷的應用上,具有很高的使用價值。
Traditionally, when Change-vector analysis (CVA) was applied to detect land cover change, the threshold of change magnitude was always determined according to empirical strategies, or from manual trial-and-error procedure. It made the result of change detection subjective. In this study, using improve Change-vector analysis to determine the threshold of the difference image automatically. The method consist of two stages, (1) prior training set, which aims at helping to determine the threshold of change magnitude, and using Pace Search method and third power polynomial fitting method find the threshold of change magnitude quickly, (2) getting the training areas from the first image and the second image severally to build up the look-up table of direction cosine of change vectors samples, then using the look-up table help to assign “from-to” type of change pixels. In this study , the improve Change-vector analysis was applied to the detection of one simulation image and two SPOT4 satellite images, overall accuracy of “change/no-change” detection was about 85%, and overall accuracy of “from-to” types of change detection is was 82%.The experimental results indicate that the improve CVA has good potential in land cover change detection.
許丕政,1998,”應用統計檢定法於衛星影像變遷偵測之研究”,碩士論文,國立中央大學土木工程研究所,中壢
楊紳,1999,”多時段分類法應用於衛星影像變遷偵測之探討”,碩士論文,國立中央大學土木工程研究所,中壢
施澄鍾,數值分析,松崗電腦圖書資料股份有限公司,民國71年
Bruzzone, L.,and D.F.Prieto, 2000, “Automatic analysis of the difference image for unsupervised change detection”, IEEE Transactions on Geoscience and Remote Sensing,Vol. 38,No. 3,pp.1171-1182.
Cohen, L.1991. On active contour models and balloons. Computer Vision, Graphics and Image Processing: Image Understanding, 53(2):211-218.
Chen, J., Gong P., He C., Pu R., Shi P., 2003, “Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis”, Photogrammetric Engineering & Remote Sensing, vol. 69,NO. 4, pp.369-379.
Congalton, R. G., 1991,”A Review of Assessing the Accuracy of Classification of Remotely Sensed Data”, Remote Senseing of the Environment, vol. 37, pp 35-46.
Jensen, J. R,1996, Introduction Digital Image Processing: A Remote Sensing Prespective, Second edition, Prentice Hall.
Johnson, R.D., and E.S. Kasischke, 1998, “Change vector analysis:A technique for the multispectral monitorinr for land cover and condition”, International Journal of Remote Sensing,61:199-209.
Kruse, F. A., A. B. Lefkoff, J. W. Boardman, K. B.Heidebrecht, A. T. Shapiro, P. J. Barloon and A. F. H. Geotz, 1993, “The Spectral Image Processing System (SIPS) – Interactive Visualization and Analysis of Imageing Spectromator Data”, Remote Senseing of the Environment, vol. 44, pp 145-163.
Lillesand, T.M., and R.W. Keifer, “Remote Sensing and Image Interpretation”, Second Edition, John Wiley & Sons, 1979
Michalek, J.L., T.W. Wagner, J.J. Luczkovich, and R.W. Stoffle, 1993.Multispectral change vector analysis for monitoring coastal marine environments, Photogrammetric Engineering & Remote Sensing, 59: pp.381-384.
Singh, A., 1986, “Change Detection in the Tropical Forest Environmental of Northern India using Landsat”, Remote Sensing and Tropical Land Management,M.J. Eden and J.T. Parry, Eds. John Wiley & Sons, London, pp.237-254.
Stauffer, M.L. and R.L. McKinney, 1978, “Landsat Image Differencing as an Automated Land Cover Change Detection Technique”, Computer Sciences Corporation, Technical Memorandum CSC/TM-78/6215 Silver Spring, MD.
Stow, D. A., L. R. Tinney, and J. E. Estes, 1980,“Deriving Land Use/Land Cover Change Statistics form Landsat: A Study of Prime Agricultural Land”, Proceeding of the 14th International Symposium on Remote Sensing of Environment, pp. 1227-1237.
Wilson, J. R., C. Blackman, and G. W. Spann, 1976,“Land use Change Detection using Ladsat Data”, Proceedings of the 5th Annual Remote Sensing of Earth Resources Conference, University of Tennesses, Tullhama,TN, pp.79-91.