| 研究生: |
施博錕 Po-Kun Shih |
|---|---|
| 論文名稱: |
球狀鐵顆粒添加對鎂鋅鈣金屬玻璃機械性質改善之研究 The Improvement of Mechanical Properties of Mg-based Metallic Glass with Ex-situ Adding Spherical Iron Particles |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 球狀鐵顆粒 、骨科植入器材 、生物降解 、金屬玻璃 |
| 外文關鍵詞: | spherical iron particles, orthopedic implants, biodegradable, Metallic Glass |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著醫療水平的日益提升,具有生物降解特性之植入材料備受醫學器材界關注,因為其擁有能夠在生物體內自主分解,免除二次手術取出造成術後感染的風險。鎂、鋅、鈣為人體內含量極高之金屬元素,將其製造形成非晶質之鎂基金屬玻璃,不但具有良好的生物相容性,同時具有貼近骨骼之楊氏係數,非常適合骨科植入器材方面的應用。然而,鎂鋅鈣金屬玻璃在常溫下呈現出嚴重脆性,尚待克服。本研究選用該系統中擁有相對優異的玻璃形成能力之Mg66Zn29Ca5為基材,添加球狀次μm級之鐵顆粒製作出金屬玻璃複材。實驗結果得知,在添加低體積分率鐵顆粒可有效提升金屬玻璃之壓縮破裂強度,複材抗壓強度可達到853 MPa,但由於細小尺寸之球狀鐵顆粒容易形成部分團聚,影響鐵顆粒球體與基材介面結合度,以致於強化顆粒無法很有效地阻擋Shear band 的傳播,因此其塑性變形量並沒有顯著提升。
With the increasing level of medical care, the biodegradable property of the implant material has been concerned by the medical equipment sector because of its self-degradability which can avoid the risk of secondary surgery to remove the implant and postoperative infection. Since magnesium, zinc and calcium are metal elements with high content in the human body. Therefore, the Mg-based bulk amorphous alloy (BAA) made of Mg, Zn, and Ca elements will have the advantages not only good biocompatibility, but also lower Young's modulus close to human bone, and very suitable for the applications on orthopedic implants. However, Mg-Zn-Ca amorphous alloy shows severe brittleness at room temperature and need to be overcome. In this study, Mg66Zn29Ca5 with relatively good glass forming ability was selected as the base alloy and ex-situ added sub-micrometer-sized spherical iron particles to form the Mg-based amorphous alloy composites (BAAC). The experimental results show that adding low volume fraction of Fe particles can effectively improve the compression and fracture strength of Mg-based BAA, and the maximum compressive strength of the composite can reach to 853 MPa. However, the sub-micrometer-sized spherical iron particles are very easy to agglomerate and affect the interface adhesion between the particles and amorphous matrix. So that, the sub-micrometer-sized Fe particles cannot effectively restrict the propagation of shear band and distinctly improve the plasticity of MgZnCa-based BAA.
[1]. I. Vroman and L. Tighzert, “Biodegradable Polymers”, Material, vol. 2, 2009, pp. 307-344.
[2]. S .Higashi, T .Yamamuro, T .Nakamura, “Polymer-hydroxyapatite composites for
biodegradable bone fillers”, Biomaterials, vol. 7, 1986, pp. 183-187.
[3]. F. Witte, “The history of biodegradable magnesium implants: A review”, Acta Biomaterialia, vol.6, 2010, pp. 1680-1692.
[4]. B. Zberg, P. J. Uggowitzer1 and J. F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, vol. 8, 2009, pp. 887-890.
[5]. Y. K. Xu, H. Ma, J. Xu and E. Ma, “Mg-based bulk metallic glass composites with plasticity and gigapascal strength”, Acta Materialia, vol. 53, 2005, pp. 1857-1866.
[6]. H. A. Bruck, T. Chrictman, A. J. Rosakis and W. L. Johnson, “Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys”, Scripta Metallurgica et Materialia, vol. 30, 1994, pp. 429-434.
[7]. H. A. Bruck, A. J. Rosakis and W. L. Johnson, “The dynamic compressive behavior of beryllium bearing bulk metallic glasses”, Journal of Materials Research, vol. 11, 1996, pp. 503-511.
[8]. T. B . Matias, V. Roche, R. P . Nogueira, “Mg-Zn-Ca amorphous alloys for application as temporary implant : Effect of Zn content of the mechanical and corrosion properties”, Materials and Design ,vol. 110, 2016, pp. 188-195.
[9]. J.S.C. Jang, W.J. Li, T.H. Li, and S.R. Jian, “Thermoplastic forming ability of a Mg-base bulk metallic glass composites reinforced with porous Mo particles”, Intermetallics, vol. 18, 2010, pp. 1964-1968.
[10]. J.S.C. Jang, L.J. Chang and J.H. Young, “Synthesis and characterization of the Mg-based amorphous/nano ZrO2 composite alloy”, Intermetallics, vol. 14, 2006, pp. 945-950.
[11]. T Egami, “Magnetic amorphous alloys: physics and technological applications”, Reports on Progress in Physics, vol. 47, 1984, pp. 1601-1725.
[12]. A. Inoue, B. L. Shen, A.R. Yavari and A. L. Greer, “Mechanical Properties of Fe-Based Bulk Glassy Alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si systems”, Journal of Materials Research, vol. 18, 2003, pp.1487-1492.
[13]. S.N. Wang, J.C. Cheng, S.H. Yi, L.M. Ke, “Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying”, Transactions of Nonferrous Metals Society of China, vol. 24, 2014, pp. 146-151.
[14]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physics, vol. 19, 1934, pp. 37.
[15]. A. Brenner, D. E. Couch, E. K. Williams, “Electrodeposition of alloys of phosphorus with nickel or cobalt”, Journal of Research of the National Bureau of Standards, vol. 44, 1950, pp.109-122.
[16]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[17]. P. Duwez and S. C. H. Lin, “Amorphous Ferromagnetic Phase in Iron-Carbon- Phosphorus Alloys”, Nature, Journal of Applied Physics., vol.38, 1967, pp. 4096-4097.
[18]. D. Turnbull, “Phase Changes”, Solid State Physics, vol. 3, 1956, pp. 225-306.
[19]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics, vol. 35, 1974, pp. 1-10.
[20]. D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Physics and Chemistry of Glasses, vol. 7, 1966, pp. 159-168.
[21]. H. A. Davies, “The formation of metallic glass”, Physics and Chemistry of Glasses, vol. 17, 1976, pp. 159-173.
[22]. 吳學陞著,新興材料-塊狀非晶質金屬材料,工業材料,第149期,1999年。
[23]. A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials, SpringerLink, Inc., Berlin Heidelberg, 1995.
[24]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science & Engineering, A, vol. 226-228, 1997, pp. 357-363.
[25]. A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method”, Materials Transactions, JIM, vol. 32-7, 1991, pp. 609-616.
[26]. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloy with High Tensile Strength Produced by High-Pressure Die Casting Method”, Materials Transactions, JIM, vol. 33-10, 1992, pp. 937-945.
[27]. C. Y. Haein, D. C. Robert, S. Frigyes, and L. J. William, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, vol. 45, 2001, pp. 1039-1045.
[28]. Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[29]. D. G. Pan, H. F. Zhang, A. M. Wang, and Z. Q. Hu.,“Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, vol.89, 2006. pp. 1-3
[30]. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura, A. Inoue, “New Pd-based bulk glassy alloys with high glass-forming ability”, Journal of Alloys and Compounds, vol. 434-435, 2007, pp. 138-140.
[31]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp. 866-875.
[32]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol. 29, 1998, pp. 1779-1793.
[33]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol. 269-272, 1998, pp. 855-864.
[34]. R. E. Reed-Hill, Physical Metallurgy Principles 3rd edition, PWS Pub. Co., Boston, USA, 1994.
[35]. R. W. Cahn, P. Hassen and E. J. Kramer, Materials Science and Technology, John Wiley & Sons Inc., New York, USA, 1991.
[36]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, vol. 22, Advances in Physics, 1973, pp. 531-580.
[37]. K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, New York, 1969.
[38]. B. Li, N. Nordstrom and E. J. Lavernia, “Spray forming of zircaloy-4”, Materials Science and Engineering, vol. 237, 1997, pp. 207-215.
[39]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Materials Science and Engineering, vol. 94, 2002, pp. 141-148.
[40]. P. S. Grant, “Spray forming”, Progress in Materials Science, vol. 39, 1995, p. 497-545.
[41]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami and N. D. Bassim, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solid, vol. 284, 2001, pp. 134-138.
[42]. S. R. Elliot, Physics of Amorphous Materials, Longman, Harlow, 1990.
[43]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, 1968, pp. 2560-2565.
[44]. W. Kauzman, “The nature of the glassy state and the behavior of liquids at low temperatures”, Chemical Reviews, vol. 43, 1948, pp. 219-225.
[45]. R. J. Greet and D. Turnbull, “Test of Adam-Gobbs Liquid Viscosity Model with 0-terphenyl Specific-Heat Data”, The Journal of Chemical Physics, vol. 47, 1967, pp. 2185-2190.
[46]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka,“Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys”, Journal of Materials Research, vol. 16, 2001, pp. 2836-2844.
[47]. 顧宜著,複合材料,新文京開發出版公司,1992年。
[48]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,1996年。
[49]. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications, Institute for Material Research”, Tohoku University, Sendai, Japan, 1999.
[50]. 鄭振東編譯,非金質金屬漫談,建宏出版社,1990年。
[51]. A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979, pp. 47-58.
[52]. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sening indentation experiments”, Journal of Materials Research, vol. 7, 1992, pp. 1564-1583.
[53]. S. R. Elliot, Physics of Amorphous Materials 2nd Ed., John Wiley & Sons, Inc., USA, 1990.
[54]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol. 25, 1977, pp. 407-415.
[55]. A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material, vol. 2, 2003, pp. 661-663.
[56]. Y. N. Zhang, G. J. Rocher, B. Briccoli, D. Kevorkov, X. B. Liu, Z. Altounian, and M. Medraj, “Crystallization characteristics of the Mg-rich metallic glasses in the Ca–Mg–Zn system”, Journal of Alloys and Compounds, vol. 552, 2013, pp. 88-97.
[57]. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature Letters, vol. 451, 2008, pp. 1085-1088.
[58]. Z. Zhang, F. Wu, G. He, and J. Eckert, “Mechanical Properties, Damage and Fracture Mechanisms of Bulk Metallic Glass Materials”, Journal of Materials Science & Technology, vol. 23, 2007, pp. 747-767.