跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡淑惠
Shu-hui Tsai
論文名稱: 具光觸媒特性之TNO透明導電膜研究
Research of photocatalytic properties in Nb-doped TiO2 transparent conducting films
指導教授: 李正中
Cheng-chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 透明導電膜光觸媒
外文關鍵詞: transparent conducting films, photocatalytic, TNO
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明導電膜在許多光電元件中都扮演著相當重要的角色,TNO 為二氧
    化鈦(TiO2)摻雜鈮(Nb),除了具有導電特性之外,由於TiO2 本身就具有光觸
    媒效果,摻雜Nb 後能隙會變大可增加光催化效果,故TNO 薄膜將成為具
    有潛力的材料。本論文研究的TNO薄膜是以脈衝式直流磁控濺鍍鍍製完成,
    薄膜特性之分析包含不同退火溫度與不同鈮摻雜功率下的光學特性、電特
    性、薄膜結構與元素組成特性。實驗結果顯示在退火370 ℃、鈮摻雜功率
    為90W 下可得到最低電阻率1.26×10-3 Ω-cm,遷移率為1.46 cm2/V-s,載子
    濃度為1.89×1021 cm-3,最佳的鈦/鈮原子比為6.12;可見光波段的平均穿透
    率約為70%、吸收率小於10%。
    光觸媒特性之分析則透過接觸角量測、亞甲基藍水溶液降解實驗來判
    斷其光催化反應效果。隨著照光時間的增加,薄膜表面的接觸角越來越小,
    由原來的疏水性變為親水性,鈮摻雜功率為90 W 的TNO 薄膜更在照光6
    分鐘內小於10°,所有樣品在照光18 分鐘內接觸角都可以小於10°;同時在
    照光過程中片電阻值幾乎不變。分解亞甲基藍水溶液的實驗可知道不同鈮
    摻雜功率之TNO薄膜在照光後濃度變化速率與接觸角量測結果有相同的趨
    勢,且與導電率成正相關。TNO 薄膜的導電性越好,載子就越容易傳輸,
    所以光激發產生的電子電洞對就能越快擴散到表面進行光催化反應。


    Nb-doped TiO2 (TNO) film is a material with conductivity and
    photo-catalytic properties. This research includes two parts, first we investigated
    the electrical and optical characteristics of the TNO films. The second part, we
    have discussed the photo-catalytic effect. After annealing in vacuum at 370 ℃,
    the phase of the deposited TNO film with 90W RF power was transited from
    amorphous to anatase The resistivity is about 1.26×10-3 Ω-cm, Hall mobility
    is about 1.46 cm2/V-s, and carrier concentration is about 1.89×1021 cm-3, and the
    ratio of atom number of titanium and niobium is 6.12. The average
    transmittance is about70% and the absorbance is less than 10% in visible
    region.
    The contact angle of TNO films decreased when the irradiation time
    increased, which implies the surface property of TNO films are changed from
    hydrophobic to hydrophilic after ultraviolet irradiation. Furthermore, the sheet
    resistivity of films is rarely changed under ultraviolet irradiating. For different
    niobium concentration TNO films, the methylene blue solution degradation
    speed decreased following the sequence of the deposition power, 90W, 95W,
    100W, 85W, 80W, which reveals the same tendency of the contact angle
    measurement. The higher conductivity, the higher mobility of the carries, and
    the photo-excitation of electron-hole pair spreading to the surface faster for the
    photocatalytic reaction.

    摘要........................................................................................................................ i Abstract .................................................................................................................ii 致謝......................................................................................................................iii 目錄......................................................................................................................iv 圖目錄.................................................................................................................vii 表目錄..................................................................................................................ix 第一章 緒論...................................................................................................... 1 1-1 前言...................................................................................................... 1 1-2 文獻回顧.............................................................................................. 2 1-3 研究動機與目的.................................................................................. 7 第二章 基礎理論.............................................................................................. 9 2-1 金屬氧化物透明導電膜之理論........................................................... 9 2-1-1 導電特性..................................................................................... 9 2-1-2 光學特性................................................................................... 13 2-2 氧化鈦鈮(TNO)之導電機制................................................................ 16 2-3 磁控濺鍍法(Magnetron sputtering) ..................................................... 19 2-4 光觸媒特性.......................................................................................... 21 2-4-1 光催化原理.............................................................................. 21 2-4-2 光催化效率的檢測.................................................................. 24 2-4-4 光觸媒的應用.......................................................................... 26 第三章 實驗步驟與設備................................................................................ 28 3-1 實驗步驟.............................................................................................. 28 3-2 實驗設備.............................................................................................. 29 3-2-1 實驗材料.................................................................................. 29 3-2-2 鍍膜儀器設備.......................................................................... 30 3-3 量測與分析儀器................................................................................. 31 3-3-1 四點探針(Four point probe) .................................................... 31 3-3-2 可見光/近紅外光光譜儀......................................................... 32 3-3-3 X 光繞射儀.............................................................................. 33 3-3-4 霍爾量測儀.............................................................................. 34 3-3-5 能量分布光譜儀(Energy Dispersive Spectrometer) ................ 36 3-3-6 亞甲基藍降解實驗.................................................................. 37 3-3-7 接觸角量測儀.......................................................................... 37 3-3-8 原子力顯微鏡(Atomic force microscope ,AFM).................... 38 第四章 實驗結果與討論................................................................................ 39 4-1 實驗一:鍍製TNO 透明導電薄膜................................................... 39 4-1-1 熱退火溫度的影響................................................................... 40 4-1-2 改變摻雜鈮的的濃度............................................................... 44 4-2 實驗二:TNO 薄膜之光觸媒特性..................................................... 49 4-2-1 薄膜表面特性-接觸角量測.................................................... 50 4-2-2 亞甲基藍水溶液降解實驗...................................................... 52 第五章 結論.................................................................................................... 58 參考文獻............................................................................................................. 60

    [1] K. L. Chopra, Applied Physics Letters, 7(5) 140-141 (1965).
    [2] E. Ahilea and A. A. Hirsch, “Resistance of Thin Metal Films Grown under a
    Longitudinal Electric Field”, Journal of Applied Physics, 42(13) (1971)
    5601-5608.
    [3]楊明輝, “透明導電膜”, 藝軒圖書出版社, (2006) p. 8
    [4] K. L. Chopra, S. Major, D. K. Pandya, “Transparent conductors—A status
    review”, Thin Solid Films 102 (1983) 1.
    [5] D. S. Ginley and C. Bright, “Transparent conducting oxides”, MRS Bull. 25,
    (2000) 15.
    [6] E. Fortunato, L. Raniero, L. Silva, A. Gonc¸alves, A. Pimentel, P. Barquinha,
    H.A ´ guas, L. Pereira, G. Gonc¸alves, I. Ferreira, E. Elangovan, and R.
    Martins, “Highly stable transparent and conducting gallium-doped zinc oxide
    thin films for photovoltaic applications”, Sol. Energy Mater. Sol. Cells 92,
    (2008) 1605.
    [7] O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium
    dioxide”, Progress in Solid State Chem. 32 (2004) 33-177.
    [8] J. F. Banfield, Brian L. Bischoff and Marc A. Anderson, J. F. Banfield, Brian
    L. Bischoff and Marc A. Anderson, “TiO2 accessory minerals: coarsening,
    and transformation kinetics in pure and doped synthetic nanocrystalline
    materials”, Chemical Geology. 110 (1993) 211
    [9] Taro Hitosugi, Naoomi Yamada, Shoichiro Nakao, Yasushi Hirose, and
    Tetsuya Hasegawa, “Properties of TiO2-based transparent conducting oxides”,
    Phys. Status Solidi A 207, No. 7, (2010) 1529–1537 .
    [10] E. F. Schubert, “The hardness scale introduced by Friederich Mohs”
    (http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Hardness.pdf)
    [11] A. Fujishima and K.Honda, “Electrochemical photocatalysis of water at a
    semiconductor electrode”, Nature. 238 (1972) 37.
    [12] S. N. Frank, A. J. Bard, ” Heterogeneous photocatalytic oxidation of
    cyanide and sulfite in aqueous solutions at semiconductor powders”,
    J.Phys.Chem.,81, (1977) 1484~1488.
    [13] Sun, B. and Smirniotis, P. G., “Interaction of anatase and rutile TiO2
    particles in aqueous photooxidation”, Catalysis Today 88, (2003) 49.
    [14] Khalil, L.B., Mourad, W.E.; Rophael, M.W., “Photocatalytic reduction of
    environmental pollutant Cr(VI) over some semiconductors under UV/visible
    light illumination”, Applied Catalysis B: Environmental 17, (1998) 267.
    [15] Y. Takata, S. Hidaka, M. Masuda and T. Ito, “Pool boiling on a super61
    hydrophilic surface”, Int. J. Energy Res, 27, (2003)1 11~119.
    [16] Serpone, N. “Brief introductory remarks on heterogeous photocatalysis”,
    Solar Energy Materials and Solar Cells 38, (1995) 369.
    [17] 高濂, 鄭珊,張青紅, “奈米光觸媒”, 2004(p.19)
    [18] L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Levy, “High
    mobility n-type charge carriers in large single crystals of anatase (TiO2 )”, J.
    Appl. Phys. 75, (1994) 633.
    [19] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y.
    Hirose, T. Shimada, and T. Hasegawa, “A transparent metal: Nb-doped
    anatase TiO2”, Appl. Phys. Lett. 86, (2005) 252101.
    [20] R P Howson, “The reactive sputtering of oxides and nitrides”, Pure&Appl.
    Chern., Vol. 66, No. 6, (1994) 1311-1318.
    [21] Jorge Osorio-Guille´n, Stephan Lany, and Alex Zunger, “Atomic Control of
    Conductivity Versus Ferromagnetism inWide-Gap Oxides Via Selective
    doping : V, Nb, Ta in Anatase TiO2”, Physics Review Letter 100, (2008)
    036601.
    [22] Yutaka Furubayashi, Naoomi Yamada, Yasushi Hirose, Yukio Yamamoto,
    and Makoto Otani, Taro Hitosugi, Toshihiro Shimada, and Tetsuya Hasegawa,
    “Transport properties of d-electron-based transparent conducting
    oxide:Anatase Ti1-xNbxO2”, J. Appl. Phys. 101, (2007) 093705.
    [23] T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G.
    Kinoda, Y. Yamamoto, T. Shimada, and T. Hasegawa, “Ta-doped anatase TiO2
    epitaxial film as transparent conducting oxide”, Jpn. J. Appl. Phys. 44, (2005)
    L1063.
    [24] F. Lagnel, B. Poumellec, J.P. Thomas, A. Ziani, and M. Gasgnier,
    “Preparation of amorphous thin films of (Ti,V)O2 and (Ti,Nb)O2 by R.F.
    sputtering”, Thin Solid Films 176, (1989)111.
    [25] Utahito Takeuchi,1 Akira Chikamatsu, Taro Hitosugi, Hiroshi
    Kumigashira,
    Masaharu Oshima, Yasushi Hirose, Toshihiro Shimada, and Tetsuya
    Hasegawa, “Transport properties and electronic states of anatase Ti1−xWxO2
    epitaxial thin films”, Journal Of Applied Physics 107, (2010) 023705.
    [26] D.D. Mulmi, T. Sekiya, N. Kamiya, S. Kurita, Y. Murakami, T. Kodaira,
    “Optical and electric properties of Nb-doped anatase TiO2 single crystal”,
    Journal of Physics and Chemistry of Solids 65 (2004) 1181–1185.
    [27] Y. Hirose, N. Yamada, S. Nakao, T. Hitosugi, T. Shimada and T. Hasegawa,
    “Large electron mass anisotropy in a d-electron-based transparent conducting
    oxide:Nb-doped anatase TiO2 epitaxial films”, Physical Review B 79, (2009)
    165108.
    [28] F. A. Grant, Rev. Mod. Phys. 31, (1959) 646.
    [29] Y. Sato, H. Akizuki, T. Kamiyama, and Y. Shigesato, “Transparent
    conductive Nb-doped TiO2 films deposited by direct-current magnetron
    sputtering using a TiO2-x target”, Thin Solid Films 516, (2008) 5758-5762.
    [30] N. Yamada, T. Hitosugi, N. L. H. Hoang, Y. Furubayashi, Y. Hirose, T.
    Shimada and T. Hasegawa, “Fabrication of Low Resistivity Nb-doped TiO2
    Transparent Conductive Polycrystalline Films on Glass by Reactive
    Sputtering”, Jpn. J. Appl. Phys. 46, (2007) 5275-5277.
    [31] N. L. H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada,
    and T. Hasegawa, “Low-temperature Fabrication of Transparent Conducting
    Anatase Nb-doped TiO2 Films by Sputtering”, Appl. Phys. Express 1,
    (2008) 115001 .
    [32] Takao Ishida, Masahisa Okada, Tetsuo Tsuchiya, Takashi Murakami, Miki
    Nakano, “Structural and surface property study of sputter deposited
    transparent conductive Nb-doped titanium oxide films”, Thin Solid Films 519
    (2011) 1934–1942
    [33]M. A. Gillispie, F. A. M. van Hest, M. S. Dabney, J. D. Perkins and D. S.
    Ginley, “rf magnetron sputter deposition of transparent conducting Nb-doped
    TiO2 films on SrTiO3”, J. Appl. Phys. 101, (2007) 033125.
    [34] Naoomi Yamada, Taro Hitosugi, Junpei Kasai, Ngoc Lam Huong Hoang,
    Shoichiro Nakao,Yasushi Hirose, Toshihiro Shimada, Tetsuya Hasegawa,
    “Transparent conducting Nb-doped anatase TiO2 (TNO) thin films sputtered
    from various oxide targets”, Thin Solid Films 518 (2010) 3101–3104.
    [35] T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T.
    Shimada and T. Hasegawa, “Fabrication of highly conductive Ti1-xNbxO2
    polycrystalline films on glass substrates via crystallization of amorphous
    phase grown by pulsed laser deposition”, Appl. Phys. Lett. 90, (2007)212106.
    [36] S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G.
    Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium
    doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile
    phase”, J. Appl. Phys. 102, (2007) 013701.
    [37] J. R. Bellingham, W. A. Phillips and C. J. Adkins, “Intrinsic performance
    limits in transparent conducting oxides”, J. Materials Science Letts. 11 (1992)
    263
    [38]楊明輝, 工業材料, 179, (1999) 134 .
    [39] H. Kamisaka, T. Hitosugi, T. Hasegawa, T. Suenaga, and K. Yamashita, J.
    Chem. Phys. 131, (2009) 034702.
    [40] R. Asahi and Y. Taga, W. Mannstadt, A. J. Freeman, “Electronic and
    optical properties of anatase TiO2”, Physical Review B 61, (2000) 11.
    [41] Taro Hitosugi, Hideyuki Kamisaka, Koichi Yamashita, Hiroyuki Nogawa,
    63
    Yutaka Furubayashi, Shoichiro Nakao, Naoomi Yamada, Akira Chikamatsu,
    Hiroshi Kumigashira, Masaharu Oshima, Yasushi Hirose, Toshihiro Shimada,
    and Tetsuya Hasegawa, “Electronic Band Structure of Transparent Conductor:
    Nb-Doped Anatase TiO2”, Applied Physics Express 1 (2008) 111203.
    [42] S. N. Frank, A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide
    and sulfite in aqueous solutions at semiconductor powders”, J. Phys. Chem.,
    81, (1977)1484~1488.
    [43] 周宏邦,濺鍍二氧化鈦與氮摻雜二氧化鈦薄膜之結構與光觸媒性質研
    究”,國立東華大學材料科學與工程學系碩士論文(2004)
    [44] A. Mills, S. L. Hunte, “An overview of semiconductor photocatalysis”,
    Journal of Photochemistry and Photobiology” A: Chemistry, 108, (1997) 1-35.
    [45] Yasuhiro Shiraishi, Takayuki Hirai, “Selective organic transformations on
    titanium oxide-based photocatalysts Selective organic transformations on
    titanium oxide-based photocatalysts”, Journal of Photochemistry and
    Photobiology C: Photochemistry Reviews 9 (2008) 157-170
    [46] Michele Lazzeri, Andrea Vittadini, annabella Selloni, “Structure and
    energetic of stoichiometric TiO2 anatase surfaces”, Phys. Rev. B 63, (2001)
    155409.
    [47] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Reports 48,
    (2003) 53.
    [48] S. Banerjee, Judy Gopal, P. Muraleedharan, A. K. Tyagi and Baldev Raj,
    “Physics and chemistry of photocatalytic titanium dioxide:Visualization of
    bactericidal activity using atomic force microscopy”, Current Science, 90,
    (2006) 1378-1383.
    [49] Noor Shahina Begum, H. M. Farveez Ahmed and O. M. Hussain,
    “Characterization and photocatalytic activity of boron-doped TiO2 thin films
    prepared by liquid phase deposition technique”, Bull. Mater. Sci., 31, No. 5,
    (2008), 741–745.
    [50] D. G. Shchukin, E. A. Ustinovich, D. V. Sviridov, and A. I. Kulak,
    “Titanium and Iron Oxide-Based Magnetic Photocatalysts for Oxidation of
    Organic Compounds and Sulfur Dioxide”, High Energy Chemistry, 38, No.
    3(2004) 167–173
    [51] C. Kuo, Y. Tseng, C. Huang, Y. Li, “Carbon-containing nano-titania
    prepared by chemical vapor deposition and its visible-light-responsive
    photocatalytic activity”, J. Mol. Catal. A 270 (1-2) (2007) 93-100
    [52] K.S. Yao, D.Y. Wang, W.Y. Ho, J.J. Yan, K.C. Tzeng, “Photocatalytic
    bactericidal effect of TiO2 thin film on plant pathogens”, Surface & Coatings
    Technology 201 (2007) 6886–6888.
    [53] Howard A. Foster, Iram B. Ditta, Sajnu Varghese, Alex Steele,
    “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism
    64
    of antimicrobial activity”, Appl Microbiol Biotechnol 90 (2011) 1847–1868
    [54] Akira Fujishima, Tata N. Rao, Donald A. Tryk, “Titanium dioxide
    photocatalysis”, Journal of Photochemistry and Photobiology C:
    Photochemistry Reviews 1 (2000) 1–21
    [55] A. Fujishima, J. Ohtsuki, T. Yamashita, S. Hayakawa, “Behavior of tumor
    cells on photoexcited semiconductor surface”, Photomed. Photobiol. 8 (1986)
    45–46.
    [56]李澤民, “奈米二氧化鈦光觸媒的改質及其在殺死癌細胞的應用”, 國立
    中正大學化學工程研究所碩士論文(2005).
    [57] Klug, H. P., and L. E. Alexander, “X-Ray diffraction procedure”, John
    Wiley & Sons, New York (1974)
    [58] R. D. Shannon, “Revised effective ionic radii in halides and
    chalcogenides”, Acta Crystallographica, A32, (1976) 751-767.
    [59] Hiroaki Tsuchiya, Jan M. Macak, Andrei Ghicov, Arlindo S. Rader,
    Luciano Taveira, Patrik Schmuki , “Characterization of electronic properties
    of TiO2 nanotube films”, Corrosion Science 49 (2007) 203–210.
    [60] R. Stephen Davidson, Colin L. Morrison and Jeffrey Abraham, “A
    comparison of the photochemical reactivity of polycrystalline (anatase),
    amorphous and colloidal forms of titanium dioxide”, J. Photochem. 24 (1984)
    27.
    [61] Lian Gao and Qinghong Zhang, “Effects of Amorphous contents and
    particle size on the photocatalytic properties of TiO2 Nanoparticles”, Scripta
    mater. 44 (2001) 1195–1198.

    QR CODE
    :::