| 研究生: |
蕭鈺淳 Yu-Chun Hsiao |
|---|---|
| 論文名稱: |
含噻吩官能基在金(111)與同分異構物C4H4N2在鉑(111)之吸附 |
| 指導教授: |
姚學麟
Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 電化學 、鉑(111) 、金(111) |
| 外文關鍵詞: | Electrochemistry, Pt(111), Au(111) |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機物吸附在金電極上可以理解為有機/無機電化學界面的模型,這與分子電子學和有機薄膜半導體的研究有關。本實驗室曾研究 terthiophene (TT)在 Au(111) 電極上的吸附行為 (Chen et al, J. Electroanal. Chem. 2022 (921) 116651),結果顯示將 Au(111) 電極浸泡在由乙醇配製成的 TT 溶液中,使 TT 分子自動形成一排列整齊的單層薄膜。
目前的研究聚焦在Au(111) 上吸附 3',4'-bis(hexylthio)-2,2':5',2''-terthiophene (DTDST),它具有 TT 骨架,與兩個 C6 鏈通過硫醚與 TT 連接。我獲得了高質量的 STM 圖像,揭示了 DTDST 分子的內部和二維空間結構。電位極大地影響了 DTDST 在 Au(111) 上的排列,將原本無序的 DTDST 分子吸附層轉變為有序的結構。在 0.1 M 的 H2SO4 和 HClO4 中,當電位小於 0 V (vs. Ag/AgCl) 時,產生的結構分別為 Au(111) - (33 9) 和 (53 26)。在正電位下引起硫酸氫根的共吸附,導致在 0.1 M H2SO4 中從 Au(111) - (33 9) 轉變成 (13 15)。這種有序的HSO4- + DTDST 共吸附層與在過氯酸中看到的混亂形成對比。STM 以清楚解析 DTDST 的內部分子結構,可以闡明分子基團與 Au(111) 電極作用,而烷基鏈的排列方式使分子間產生凡得瓦力。原位 STM 也顯示了吸附的 DTDST 分子的氧化產生了低聚噻吩。
另外還研究了 3'-(hexylthio)-2,2':5',2''-terthiophene (DTST) 在 Au(111) 上的吸附。這個分子有一個 C6 鏈通過硫醚連接到 TT 核心上。它與DTDST一樣,電位和陰離子都影響 DTST 在 0.1 M 硫酸和過氯酸中的空間結構。在電位小於0 V (vs. Ag/AgCl),產生的結構分別為 Au(111) - (33 5) 和 (13 27)。在 0.1 M 硫酸中,硫酸氫根陰離子與DTST共吸附,使Au(111) - (33 5) 轉變成 Au(111) - (13 16)。值得注意的是,STM 顯示 TT 的順反形式的異構化,這可能和分子內 S – S 相互作用有關,它可能抑制 C – C 單鍵的旋轉。
研究在電位控制下 C4H4N2 異構物(噠嗪PD、嘧啶PM、吡嗪PZ)在 Pt(111) 電極的吸附。在過氯酸鹽介質中進行的循環伏安實驗,這些分子導致了一個不可逆的還原峰。當 pH 值從 1 增到 3 時,向負電位移動 120 mV,表明這是一個 1 H+/1e- 的過程,推測是分子吸附結構的不可逆變化,同時也是 Pt(111) 上的氫原子吸附。這些分子的兩個N端在還原反應之前皆鍵結於 Pt(111) 上,但在負電位時失去了其中一個 Pt – N 表面的結合,這導致這些分子重新定向到一個更直立的構型,並可能在稍後階段在Pt(111)上質子化,這些質子化的 C4H4N2H+ 無法恢復它們原來的吸附構型。
我們從不可逆還原特徵的電荷中估計每個分子的覆蓋率,PD、PM 和 PZ 的電荷分別為 80.5、78.2 和 82.3 µC/cm2,表明這些分子在 Pt(111) 電極上具有相同的覆蓋度,推測它們有類似的吸附構型,但有不同的傾斜角度。在 pH1 過氯酸中,PZ 的還原峰最小,這歸因於它在 Pt 電極上的水平方向。除了 N 端,芳香環 (PZ) 的 π - 電子也有助於與Pt表面結合,導致它和 Pt(111) 有較強的鍵結,因此較難改變它的吸附構型。
The adsorption of organic species at gold electrode serves as a model to understand the organic/inorganic electrified interface, which has been relevant to the study of molecular electronics and organic thin film semiconductors. Our previous study on terthiophene (TT) adsorption on Au(111) electrode (Chen et al, J. Electroanal. Chem. 2022 (921) 116651.) shows that highly ordered TT molecular thin film can be installed on an Au(111) crystal by immersing in a TT dosing solution made of ethanol.
The current study focused on the adsorption of 3',4'-bis(hexylthio)-2,2':5',2''-terthiophene (DTDST), a molecule with a TT backbone attached with two C6 chains via thiolethers, on an ordered Au(111) electrode. High – quality STM images were obtained to reveal the internal and 2D spatial structures of DTDST admolecules. Potential greatly influenced the organization of DTDST, which transformed the pristine DTDST disarray to ordered structures, characterized as Au(111) - (33 9) and (53 26) in 0.1 M H2SO4 and HClO4, respectively, when the potential was more negative than 0 V (vs. Ag/AgCl). Bisulfate coadsorption at positive potential resulted in conversion from (33 9) to (13 15) in 0.1 M H2SO4. This ordered HSO4- + DTDST adlayer contrasts with a disarray seen in perchloric acid. The –SC6 modifiers of DTDST admolecules were clearly imaged by the STM, suggesting that these groups interacted with the Au electrode. The alkyl chains arranged in a way that allowed intermolecular van der Waals force interactions. Oxidation of adsorbed DTDST molecules to yield oligomers was also revealed by in situ STM.
The adsorption of 3'-(hexylthio)-2,2':5',2''-terthiophene (DTST) on Au(111) was also examined. This molecule has one C6 chains attached to the TT core via thiolether. As with DTDST, both the potential and the anion affect the spatial structures of DTST fpmd in 0.1 M sulfuric acid and perchloric acids. At potential negative of 0 V (vs. Ag/AgCl), the structures fond in and H2SO4 and HClO4 are Au(111) - (33 × 5) and (13 × 27). In 0.1 M sulfuric acid, bisulfate anion is coadsorbed with DTST, transforming Au(111) - (33 × 5) to (13 × 16). It is noteworthy that the STM imaging reveals the isomerization of cis-trans forms of TT, suggesting that the S - S interaction might be important enough to refrain the rotation C – C single bond.
The second part - the adsorption of C4H4N2 isomers (Pyridazine PD, Pyrimidine PM, Pyrazine PZ) from solution onto Pt(111) electrode under potential control is also examined. These admolecules result in an irreversible reduction peak in the cyclic voltammetry experiments performed in perchlorate media. This feature shifts 120 mV negatively as the pH incrases from 1 to 3, suggestging it is a 1H+/1e- process, presumed to be an irreversible change of molecular adsorption configuration, coupled with hydrogen adsorption at the Pt electrode. It is proposed that two N-ends of these molecules are tethered to the Pt electrode prior to the reduction reaction, but loses one of these Pt – N surface bonding at negative potential. This leads to reorientation to a more upright configuration of these molecules and possibly protonation at a later stage on the Pt electrode. These protonated C4H4N2H+ do not restore their original adsorption configurations.
We estimate the coverage of each molecule from the charge involved in the irreversible reduction feature. The charges are 80.5, 78.2 and 82.3 µC/cm2 for PD, PM, and PZ, suggesting that these molecules have similar adsorption configurations with different tilted angle on the Pt(111) electrode. PZ is the smallest reduction peak at pH1 perchloric acid, which is attributed to its horizontal orientation on the Pt electrode. In addition to N – ends, the π- electron of the aromatic ring (PZ) also contributes to the surface binding with the Pt surface.
[1] S. Vegiraju, B.-C. Chang, P. Priyanka, D.-Y. Huang, K.-Y. Wu, L.-H. Li, W.-C. Chang, Y.-Y. Lai, S.-H. Hong, B.-C. Yu, C.-L. Wang, W.-J. Chang, C.-L. Liu, M.-C. Chen, A. Facchetti, Intramolecular Locked Dithioalkylbithiophene-Based Semiconductors for High-Performance Organic Field-Effect Transistors, Advanced Materials, 29 (2017) 1702414.
[2] V. Joseph, C.-H. Yu, C.-C. Lin, W.-C. Lien, H.-C. Tsai, C.-S. Chen, A.A.A. Torimtubun, A. Velusamy, P.-Y. Huang, G.-H. Lee, S.-L. Yau, S.-H. Tung, T. Minari, C.-L. Liu, M.-C. Chen, Quinoidal thioalkyl-substituted bithiophene small molecule semiconductors for n-type organic field effect transistors, Journal of Materials Chemistry C, 8 (2020) 15450-15458.
[3] Y. Ezhumalai, F.-S. Lin, M.-S. Fan, K. Prabakaran, J.-S. Ni, Y.-C. Wu, G.-H. Lee, M.-C. Chen, K.-C. Ho, Thioalkyl-Functionalized Bithiophene (SBT)-Based Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, 12 (2020) 15071-15079.
[4] F.-S. Lin, P. Priyanka, M.-S. Fan, S. Vegiraju, J.-S. Ni, Y.-C. Wu, Y.-H. Li, G.-H. Lee, Y. Ezhumalai, R.-J. Jeng, M.-C. Chen, K.-C. Ho, Metal-free efficient dye-sensitized solar cells based on thioalkylated bithiophenyl organic dyes, Journal of Materials Chemistry C, 8 (2020) 15322-15330.
[5] P.-S. Lin, S. Inagaki, J.-H. Liu, M.-C. Chen, T. Higashihara, C.-L. Liu, The role of branched alkylthio side chain on dispersion and thermoelectric properties of regioregular polythiophene/carbon nanotubes nanocomposites, Chemical Engineering Journal, 458 (2023) 141366.
[6] S.N. Afraj, C.-C. Lin, A. Velusamy, C.-H. Cho, H.-Y. Liu, J. Chen, G.-H. Lee, J.-C. Fu, J.-S. Ni, S.-H. Tung, S. Yau, C.-L. Liu, M.-C. Chen, A. Facchetti, Heteroalkyl-Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport, Advanced Functional Materials, 32 (2022) 2200880.
[7] S. Vegiraju, X.-L. Luo, L.-H. Li, S.N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh, C.-C. Lin, S.-H. Hong, H.-C. Tsai, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Solution Processable Pseudo n-Thienoacenes via Intramolecular S···S Lock for High Performance Organic Field Effect Transistors, Chemistry of Materials, 32 (2020) 1422-1429.
[8] C.-C. Lin, S.N. Afraj, A. Velusamy, P.-C. Yu, C.-H. Cho, J. Chen, Y.-H. Li, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors, ACS Nano, 15 (2021) 727-738.
[9] S. Vegiraju, A.A. Amelenan Torimtubun, P.-S. Lin, H.-C. Tsai, W.-C. Lien, C.-S. Chen, G.-Y. He, C.-Y. Lin, D. Zheng, Y.-F. Huang, Y.-C. Wu, S.-L. Yau, G.-H. Lee, S.-H. Tung, C.-L. Wang, C.-L. Liu, M.-C. Chen, A. Facchetti, Solution-Processable Quinoidal Dithioalkylterthiophene-Based Small Molecules Pseudo-Pentathienoacenes via an Intramolecular S···S Lock for High-Performance n-Type Organic Field-Effect Transistors, ACS Applied Materials & Interfaces, 12 (2020) 25081-25091.
[10] S.N. Afraj, C. Chen, A. Velusamy, J.-H. Liu, S. Yau, M.-C. Chen, Potential-Controlled Organization of 2,3-Diphenyl-5,7-di(thiophen-2-yl)thieno[3,4-b]pyrazine Adsorbed on Au(111) and Au(100) Electrodes, The Journal of Physical Chemistry C, 126 (2022) 12906-12915.
[11] A. Velusamy, S.N. Afraj, S. Yau, C.-L. Liu, Y. Ezhumalai, P. Kumaresan, M.-C. Chen, Fused thiophene based materials for organic thin-film transistors, Journal of the Chinese Chemical Society, 69 (2022) 1253-1275.
[12] P.-S. Lin, Y. Shoji, S.N. Afraj, M. Ueda, C.-H. Lin, S. Inagaki, T. Endo, S.-H. Tung, M.-C. Chen, C.-L. Liu, T. Higashihara, Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors, ACS Applied Materials & Interfaces, 13 (2021) 31898-31909.
[13] C.-H. Kuan, R. Balasaravanan, S.-M. Hsu, J.-S. Ni, Y.-T. Tsai, Z.-X. Zhang, M.-C. Chen, E.W.-G. Diau, Dopant-Free Pyrrolopyrrole-Based (PPr) Polymeric Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells with Stability Over 6000 h, Advanced Materials, 35 (2023) 2300681.
[14] K. Itaya, In situ scanning tunneling microscopy in electrolyte solutions, Prog. Surf. Sci., 58 (1998) 121-247.
[15] C. Chen, X.-P. Peng, S. Yau, The adsorption and electropolymerization of terthiophene on Au(111) electrode – Probed by in situ STM, J. Electroanal. Chem., 921 (2022) 116651.
[16] L.D.S. Lapitan, B.J.V. Tongol, S.-L. Yau, In situ scanning tunneling microscopy imaging of electropolymerized poly(3,4-ethylenedioxythiophene) on an iodine-modified Au(111) single crystal electrode, Electrochim. Acta, 62 (2012) 433-440.
[17] L.D.S. Lapitan, Jr., B.J.V. Tongol, S.-L. Yau, Molecular Assembly and Electropolymerization of 3,4-Ethylenedioxythiophene on Au(111) Single Crystal Electrode as Probed by In Situ Electrochemical STM in 0.10 M HClO4, Langmuir, 26 (2010) 10771-10777.
[18] K. Nishiyama, M. Tsuchiyama, A. Kubo, H. Seriu, S. Miyazaki, S. Yoshimoto, I. Taniguchi, Conformational change in 4-pyridineethanethiolate self-assembled monolayers on Au(111) driven by protonation/deprotonation in electrolyte solutions, Phys. Chem. Chem. Phys., 10 (2008) 6935-6939.
[19] J. Ramos, D. Kabir, I. Mejia, M. Mireles, C. Martinez Perez, M. Quevedo-Lopez, Inkjet Printed Thin Film Transistors Using Cadmium Sulfide as Active Layer Prepared by In-Situ Micro-Reaction, Electrochemical and Solid-State Letters, 2 (2013) P67-P69.
[20] H. Minemawari, T. Yamada, H. Matsui, J.y. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Inkjet printing of single-crystal films, Nature, 475 (2011) 364-367.
[21] H.-W. Hsu, C.-L. Liu, Spray-coating semiconducting conjugated polymers for organic thin film transistor applications, RSC Advances, 4 (2014) 30145-30149.
[22] J. Bai, Y. Jiang, Z. Wang, Y. Sui, Y. Deng, Y. Han, Y. Geng, Bar-Coated Organic Thin-Film Transistors with Reliable Electron Mobility Approaching 10 cm2 V−1 s−1, Advanced Electronic Materials, 6 (2020) 1901002.
[23] A. Hamelin, Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces, J. Electroanal. Chem., 407 (1996) 1-11.
[24] O.M. Magnussen, J. Hotlos, R.J. Nichols, D.M. Kolb, R.J. Behm, Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunneling microscopy, Phys. Rev. Lett., 64 (1990) 2929-2932.
[25] C. Köntje, D.M. Kolb, G. Jerkiewicz, Roughening and long-range nanopatterning of Au(111) through potential cycling in aqueous acidic media, Langmuir : the ACS journal of surfaces and colloids, 29 32 (2013) 10272-10278.
[26] C.-C. Chang, S.-L. Yau, J.-W. Tu, J.-S. Yang, Examination of the electrified interfaces of Au(111) in 0.1 M HClO4 containing organic iodide compounds with cyclic voltammetry and in situ scanning tunneling microscopy, Surf. Sci., 523 (2003) 59-67.
[27] B. Koslowski, A. Tschetschetkin, N. Maurer, E. Mena-Osteritz, P. Bäuerle, P. Ziemann, Terthiophene on Au(111): A scanning tunneling microscopy and spectroscopy study, Beilstein Journal of Nanotechnology, 2 (2011) 561-568.
[28] B.N. Taber, D.A. Kislitsyn, C.F. Gervasi, S.C.B. Mannsfeld, L. Zhang, A.L. Briseno, G.V. Nazin, Adsorption-Induced Conformational Isomerization of Alkyl-Substituted Thiophene Oligomers on Au(111): Impact on the Interfacial Electronic Structure, ACS Appl. Mater. Interfaces, 7 (2015) 15138-15142.
[29] H. Glowatzki, S. Duhm, K.F. Braun, J.P. Rabe, N. Koch, Molecular chains and carpets of sexithiophenes on $\mathrm{Au}(111)$, Phys. Rev. B, 76 (2007) 125425.
[30] S.-L. Yau, Y.-G. Kim, K. Itaya, In Situ Scanning Tunneling Microscopy of Benzene Adsorbed on Rh(111) and Pt(111) in HF Solution, J. Am. Chem. Soc., 118 (1996) 7795-7803.
[31] Z.-X. Xie, Z.-F. Huang, X. Xu, Influence of reconstruction on the structure of self-assembled normal-alkane monolayers on Au(111) surfaces, Physical Chemistry Chemical Physics - PHYS CHEM CHEM PHYS, 4 (2002) 1486-1489.
[32] E.A. Bazzaoui, S. Aeiyach, P.C. Lacaze, Low potential electropolymerization of thiophene in aqueous perchloric acid, J. Electroanal. Chem., 364 (1994) 63-69.
[33] J. Lu, X. Yang, Z. Hao, R. Du, X. Wang, H. Tan, C. Yan, J. Cai, X. Lin, S. Du, On-Surface Synthesis and Characterization of Polythiophene Chains, J. Phys. Chem. C, 124 (2020) 764-768.
[34] S. Yau, C.-J. Huang, W. Liao, STM Characterization of Self-Assembled Monolayers of Cysteine Betaine on Au(111) Electrode in Perchloric and Sulfuric Acids, J. Phys. Chem. C, 121 (2017) 16845-16853.
[35] Y. Hsu, C. Wu, S. Yau, A STM view of the reorientation of cytosine adsorbed on the Au(111) – (1 × 1) electrode in sulfuric and perchloric acids, Electrochim. Acta, 390 (2021) 138871.
[36] S. Yau, S. N. Afraj, M.-C. Chen, Potential- and Anion-Controlled Organization of 2-Mercapto-5-Benzimidazolesulfonate on the Au(111) Electrode in Acidic Media, J. Phys. Chem. C, 124 (2020) 25341-25350.
[37] C.-C. Liao, S. Yau, The Effects of Potential and pH on the Adsorption of Guanine on the Au(111) Electrode, Langmuir, 38 (2022) 2495-2501.
[38] G.-J. Su, H.-M. Zhang, L.-J. Wan, C.-L. Bai, Phase transition of thiophene molecules on Au(111) in solution, Surf. Sci., 531 (2003) L363-L368.
[39] E.J. Lien, W.D. Kumler, Dipole Moment and Structure of Thiophene Derivatives and Benzene Analogs, Journal of Pharmaceutical Sciences, 59 (1970) 1685-1688.
[40] K. Selvaraju, M. Jothi, P. Kumaradhas, A Charge Density Analysis on Quarter Thiophene Molecular Nanowire Under Applied Electric Field: A Theoretical Study, Journal of Computational and Theoretical Nanoscience, 10 (2013) 357-367.
[41] J. Noh, E. Ito, K. Nakajima, J. Kim, H. Lee, M. Hara, High-Resolution STM and XPS Studies of Thiophene Self-Assembled Monolayers on Au(111), J. Phys. Chem. B, 106 (2002) 7139-7141.
[42] D.F. Yang, C.P. Wilde, M. Morin, Studies of the Electrochemical Removal and Efficient Re-formation of a Monolayer of Hexadecanethiol Self-Assembled at an Au(111) Single Crystal in Aqueous Solutions, Langmuir, 13 (1997) 243-249.
[43]Methylaminomethylidyne: A Stable Intermediate Formed on the Pt(111) Surface from the N-Protonation of Methyl Isocyanide