跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳瑞捷
Jui-Chieh Chen
論文名稱: 利用暫態熱微影技術製備高分子微結構
Transient Thermolithography for Polymer Thin Film Patterning
指導教授: 洪銘聰
Ming-Tsung Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 微影術微加工高分子薄膜
外文關鍵詞: lithography, micro fabrication, polymer thin film
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一般半導體製程中,大多採用光微影的方式達到圖形轉移的目的,而光微影所能製作出的最小線寬會受到光學繞射極限的物理現象,使得線寬尺寸受到限制。利用熱微影的方式以熱傳導的形式來傳遞能量將可避免光繞射的限制,除此之外,熱的傳導速度遠低於光波的傳輸速度,因此具有控制傳輸距離的可行性。本文主要對光阻劑在加熱時結構產生交聯反應(cross-link)作為探討,實驗利用薄膜加熱器配合脈衝熱源,控制不同的脈衝寬度及週期,觀察光阻劑輪廓隨著加熱時間及溫度的變化,以及厚度的趨勢,並討論光阻劑加熱時的化學反應對於光阻劑結構交聯的程度,及顯影後留下被加熱區域的光阻劑所達到圖形轉移的效果,製作出不同厚度之微結構。另外透過有限元素分析軟體COMSOL建立模型,探討溫度分佈的影響,進而了解熱於高分子阻劑中的暫態傳輸現象。


    Photolithography is widely used in semiconductor industry and many micro/nano-manufacturing. Its resolution is usually limited by the wavelength of the light source. Thermal lithography use heat as the exposure source which has the possibility to generate patterns with minimum feature size exceeding the diffraction limit in photolithography. In addition, heat transport is much slower than light which allows us to control the transport distance. In this manuscript, we use transient heating to generate resist patterns with different thicknesses and study the heat transport and crosslinking in polymer thin films. The experiments use thin film heaters with pulsed Joule heating. Different pulse widths and periods are used to control the temperature rises and accumulated heating durations. The trend of the resulting resist thicknesses reveals the important role of the relaxation time in the cross-linking reaction. In addition, through the finite element analysis, we can simulate temperature distribution, and then to understand the thermal transient transport phenomena in polymer resists.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 4 1-3 文獻回顧 5 1-4 論文架構 9 第二章 理論背景 10 2-1 熱微影技術原理 10 2-2 光阻劑之性質 11 2-2-1 光阻劑組成成分 12 2-2-2 光阻劑特性相關參數 14 2-3 影像反轉(Image Reversal) 15 第三章 研究方法 17 3-1 研究架構 17 3-2 模擬方法 19 3-2-1 模擬系統建立 19 3-2-2 熱傳導方程式 20 3-2-3 網格測試 21 3-3 實驗步驟 22 3-3-1 試片製作 23 3-3-2 穩態與暫態加熱溫度量測方法 27 第四章 結果與討論 31 4-1 穩態加熱 31 4-1-1 穩態加熱下阻劑溫度的模擬 32 4-1-2 穩態加熱下溫度對阻劑輪廓的影響 37 4-2 暫態加熱 41 4-2-1 暫態加熱溫度模擬 41 4-2-2 脈衝寬度對溫度影響之模擬 45 4-3 暫態加熱實驗 46 4-3-1 週期脈衝累積時間對阻劑厚度之影響 50 4-3-2 不同脈衝寬度對阻劑厚度之影響 53 4-3-3 不同週期對阻劑厚度之影響 57 4-4 參數組合對阻劑輪廓之影響 60 4-4-1 脈衝寬度與累積加熱時間隨週期變化對光阻厚度的影響 61 4-4-2 不同週期下加功能率隨累積加熱時間對阻劑輪廓影響 69 第五章 結論與未來工作 73 參考文獻 75

    [1] D.J. Nagel and M.E. Zaghloul , MEMS : Micro Techanology : Mega
    Impact, IEEE Circuit Devices Magazine. Vol. 28, pp. 14-25, 2001.
    [2] K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie and J. Tominaga, “High-speed
    fabrication of large-area nanostructure optical devices”,
    Microelectronic Engineering,Vol. 85, pp. 1197-1201, 2008.
    [3] Y. Ozaki, T.Ohyama, T. Yasuda and I. Shimoyama , “An air flow sensor modeled on wind receptor hairs of insects”, Proc. MEMS, pp. 531-536, 2000.
    [4] E.V. Mukerjee, A.P. Wallace, K.Y. Yan, D.W. Howard, R.L. Smith, S.D.
    Collins, “Vaporizing liquid microthruster”, Sensors and Actuators, Vol.83,
    pp. 231-236, 2000.
    [5] G.M.Whitesides,“The origins and the future of microfluidics”, Nature, Vol. 422, pp. 368-373, 2006.
    [6] L.J.Lee , “BioMEMS and Micro-/Nano-Processing of Polymers-An
    Overview”, Annals of biomedical Engineering, Vol.34, pp. 25-46, 2003.
    [7] 楊錫行, 黃廷合 編著, 微機械加工概論, 全華科技圖書股份有限公司, 2004.
    [8] D. Zhu1, K. Wang and N. S. Qu, “ Micro wire electrochemical
    cutting by using in situ fabricated wire electrode”, CIRP Annals -
    Manufacturing Technology , Vol.56, pp.241-244, 2007.
    [9] X. M. Zhao, Xia Y,G. M. Whitesides, “Soft lithographic methods for
    nano-fabrication, ” Journal of Materials Chemistry, Vol.7, pp. 1069-1074, 1997.
    [10] D. Qin, Y. N. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning, ”Nat. Protoc. Vol.5, pp. 491-502, 2010.
    [11] Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an exclmer laser”, Appl. Phys. Lett. Vol. 40, pp.374-375, 1982.
    [12] S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices”, Nature Vol. 412, pp. 697-698, 2001.
    [13] L. Strong and G. M. Whitesides, "Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single-crystals - Electron-Diffraction Studies", Langmuir ,Vol.4, pp. 546-558, 1988.
    [14] G. M. Whitesides and B. Grzbowski, “Self-assembly at all scales”, Sciencei, Vol.295, pp. 2418 -2421, 2002.
    [15] S. Y. Chou and P. R. Krauss, “Imprint lithography with 25-nanometer resolution”, Science Vol.272, pp.85-87, 1996.
    [16] H. Ahmed, “Electron-beam lithography for microcircuit fabrication”, Electronics and Power , pp. 433-436, 1976.
    [17] T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography”, Microelectron. Eng, pp. 117-135, 2001.
    [18] M. Kuwahara , C. Mihalceaa, N. Atodaa, J. Tominagaa, H. Fujib, T. Kikukawac,“Thermal lithography for 0.1 mm pattern fabrication” Microelectronic. Eng., Vol. 61-62, pp. 415-420, 2002.
    [19] C. P. Liu , Y. X. Huang , C. C. Hsu , T. R. Jeng, and J. P. Chen, “Nanoscale fabrication using thermal lithography technique with blue laser”, IEEE Trans. Magnetics, Vol. 45, pp.2206-2208, 2009.
    [20] A. S. Basu, S. McNamara, and Y. B.Gianchandani, “Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes”, J. Vac. Sci. Technol. Vol. 22, pp. 3217-3220, 2004.
    [21] Y. M. Hua, S. Saxena, H. Clifford, W. P. King, “ Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip” , J. Micro/Nanolith.MEMS MOEMS,Vol. 6, 023012, pp.1-6, 2007.
    [22] A. Schmidt X. Chen, and G. Chen, “ Contact thermal lithography”,IMECE, 2005.
    [23] M.T. Hung, J. Kim, and Y. S. Ju, “Exploration of Thermolithography for micro- and nanomanufacturing,” Appl. Phys. Lett. Vol. 88, 123110, 2006.
    [24] A. Reiser, J.P. Huang, X. He, T.F. Yeh, S. Jha, H.Y. Shih, M.S. Kim, Y.K. Han, and K. Yan, “The molecular mechanism of novolak–diazonaphthoquinone resists, ” European Polymer Journal vol. 38, pp.619–629, 2002.
    [25] 龍文安, 半導體微影技術, 五南圖書公司, 2004.
    [26] M. Spak, D. Mamato, S. Jain, and D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist ”, AZ Electronic Material.
    [27] J. D. Plummer, M. D. Deal, P. B. Griffin著, 羅正忠, 李嘉平, 鄭湘原 譯, “半導體工程”,台灣培生教育出版股份有限公司, 2005.
    [28] J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography”, Applied Optic, Vol. 37, pp.2145-2152, 1998.
    [29] F. P. Incropera, D. P. Dewitt, Fundamentals of heat and mass transfer, 2002.
    [30] E. Gogolides E. Tegou, K. Beltsios b, K. Papadokostakib, and M.
    Hatzakis, “Thermal and mechanical analysis of photoresist and silylated photoresistfilms: Application to AZ 5214”, Microelectronic Eng. Vol. 30, pp.267-270, 1996.
    [31] K. Kato and K. Ito, “Dynamic transition between rubber and sliding states
    attributed to slidable cross-links”, Soft Matter, Vol.7, pp. 8737-8740, 2011.

    QR CODE
    :::