| 研究生: |
黃聖傑 Huang Sheng-Jie |
|---|---|
| 論文名稱: | Convergence rates of harmonic measures and extremal lengths of sets in the upper half plane |
| 指導教授: |
方向
Xiang Fang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 調和測度 、複分析 、極值長度 |
| 外文關鍵詞: | Harmonic measure, Extremal lengths, Complex analysis |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Beurling 估計表達出所有的調和測度都小於收斂速度的二分之一次方。
這篇論文中所做的是在上半平面線段調和測度收斂到零的速度跟收斂速度一致,以及所有上半平面的聯通子集收斂到零的速度有下界跟收斂半徑一致。
還有極值長度在上半平面的各種到零跟無限的收斂或發散情況探討。
Consider Beurling estimate we have w(z,B(\zeta,r)\cap \partial\Omega,\Omega)<Cr^{1/2}.
Now I will do harmonic measure convergence rate on upper-half plane with slash and extremal distance convergence or disconvergence rate on upper-half plane.
[1] J.B Garnett & D.E Marshall-Harmonic Measure, Cambridge University (2005)
[2] P.L.Duren-Univalent functions, Springer-Verlag (1983)
[3] J. Bak-Complex analysis(3rd), Springer (2010)
[4] W.Rudin-Real and complex analysis, McGraw-Hill Book company
[5] C.Pommerencke-Boundary Behaviour of Conformal Maps, Springer-Verlag
(1983)
[6] M.H.A. Newman-Elements of the topology of plane sets of points, Springer-
Verlag (1992)
[7] D. E. Marshall and S.Rohde-Convergence of a Variant of the Zipper Algorithm
for Conformal Mapping (2007)
[8] C. J. Bishop-Harmonic Measure: Algorithms and Applications (2018)