| 研究生: |
刁仁康 Ren Kang |
|---|---|
| 論文名稱: |
液晶面板廠之含磷廢水化學混凝處理評估 Evaluation of Phosphate-containing Wastewater Treated by Chemical Coagulation Process in TFT-LCD Plant |
| 指導教授: |
曾迪華
Dyi-Hwa Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 除磷 、化學混凝 、RO濃縮水 、鋁蝕刻廢水 、TFT-LCD |
| 外文關鍵詞: | TFT-LCD, Al-etching wastewater, Chemical Coagula |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究案例廠為一TFT-LCD六代廠,該廠建置以高水回收率為目標;製程水回收率90 %、全廠水回收率85 %。也因高水回收率,致使稀釋效果不佳,放流水的磷濃度較同產業偏高。
由案例廠含磷廢水流佈調查,含磷濃度較高的廢水主要來源共有二處:一為製程所直接排放之鋁蝕刻清洗廢水;另一為鋁蝕刻清洗廢水,經混合其他低濃度有機廢水收集後,再經生物處理系統(缺氧/好氧+MBR)及逆滲透過濾處理後,於逆滲透單元所產生的RO濃縮排出水(ROR)。
本研究分別利用氯化鈣、氯化鋁、氯化亞鐵三種混凝劑,進行化學混凝瓶杯試驗操作,處理上述二股實廠廢水。實驗結果顯示,其除磷的最適操作條件分別為:(1)氯化鈣之最適pH值為8、Ca/P比為2.0、(2)氯化鋁之最適pH值為5、Al/P比為1.4、及(3)氯化亞鐵之最適pH值為6、Fe/P比為1.8。鋁鹽和鐵鹽之實驗結果與文獻相同,但氯化鈣在pH值高於9以上,磷的去除效率會減低,此與一般添加石灰在pH值10以上,可得較佳效果,明顯的不同。此外經整體評估比較藥劑成本及操作狀況,於案例廠除磷,以氯化鈣為較佳的混凝藥劑。
比較化學混凝除磷單元於案例廠設置地點,不論設在二股實廠廢水源何處,其化學藥劑及污泥操作費用差異很小,但鋁蝕刻清洗廢水經直接化混後,其水質可能會阻塞後續RO膜,失去水回收效益,且鋁蝕刻清洗廢水之化混單元的工程施作費用較高,經評估水資源效益及工程費用後,將化混單元,設置於案例廠處理RO濃縮水中的磷,為較適之位置。
The wastewater treatment system, installed at a 6th generation of TFT-LCD manufacturing plant, was designed to meet the goal of reaching 90 % process water recovery and 85 % total water recovery. The high percentage of water recovery resulted in losing the dilution efficiency, thus, the effluent phosphorous concentration was much higher compared with the effluent qualities discharged by similar industry.
According to the investigation of phosphorous distribution in various sources of this case plant, it found that there are two major sources of phosphate containing wastewater. One is directly discharge from cleaning process of Al-etching. The other is RO reject (ROR) in which the RO system followed on the anoxic/aerobic coupled with membrane filtration (A/O MBR) process for treating the mixture of raw wastewater from cleaning process of Al-etching and low organic concentration wastewater from other manufacturing processes.
This study intent to investigate the optimum operation conditions for removing the phosphate from the above two sources of wastewater by chemical coagulation jar test using calcium chloride, aluminum chloride, and ferrous chloride as coagulant, respectively. The experimental results revealed that the optimum operating conditions were: (1) pH value was 8 and Ca/P dosage ratio was 2 for calcium chloride; (2) pH value was 5 and Al/P dosage ratio was 1.4 for aluminum chloride; and (3) pH value was 6 and Fe/P dosage ratio was 1.8 for ferrous chloride. The optimum results obtained in this study were fully agreeing with the past studies for aluminum chloride and ferrous chloride as coagulant. However, the phosphate removal efficiency was decreased as the pH value was greater than 9 for calcium chloride as coagulant in this study. This result was completely disagreeing with using lime as common coagulant which the best phosphate removal efficiency generally occurs at pH was above 10. Based on the comparative evaluation of chemical cost and operating condition for the three coagulants, it suggests that calcium chloride is the proper coagulant for removing phosphate in the case plant.
Comparing the chemical cost and waste sludge treatment cost for treating these two phosphate containing wastewater streams, there are insignificant differences for installing chemical coagulation process at either site of wastewater source. However, the wastewater from cleaning process of Al-etching after pretreatment by chemical coagulation, its water qualities may cause clogging of the RO membrane and decreasing the benefits for water recycle and reuse. Meanwhile, the construction cost of chemical coagulation process for phosphate removal from Al-etching wastewater was high. Consequently, the better location for phosphate removal by chemical coagulation process in this case plant should focus on ROR stream.
1.Fuh, G. W. and M. Chen, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecol., Vol. 2(2) , 1975, p. 119-138.
2.U. S. EPA, Chemical aids manual for wastewater treatment faci-lities. EPA 430/9-79-018, 1979.
3.Marais, G., R. E. Lowenthal and I. P. Siebrits, Observations supporting phosphate removal by biological excess uptake – a review. Wat. Sci. Tech., Vol. 15, 1983, p. 15-42.
4.Comeau, Y., K. J. Hall1, R. E. W. Hancock and W. K. Oldham, Biochemical model for enhanced biological phosphorus removal. Wat. Res., Vol. 20(12) , 1986, p. 1511-1521.
5.Arun, V., T. Mino and T. Matsuo, Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems. Wat. Res., Vol. 22(5) , 1988, p. 565-570.
6.Stensel, H. D., Principles of biological phosphorus removal. In: Phosphorus and nitrogen removal from municipal wastewater principles and practice, R. I. Sedlak(ed.), 2rd edn, Lewis publishers, New York, 1991, p. 141-163.
7.Manning, P.G., Murphy, T.P., and Prepas, E.E., “Intensive formation of vivianite in the bottom sediments of mesotrophic narrow lake, alberta”, Canadian Mineralogist 29,1991, p.77-85.
8.Moutin, T., J. Y. Gal, H. El Halouani, B. Picot and J. Bontoux, Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate: Theoretical and experimental results. Wat. Res., Vol. 26(11) , 1992, p. 1445-1450.
9.Jenkins, D., Handout for the workshop of operation and control in activated sludge systems. Graduate Institute of Environmental Engineering, National Central University, 1992.
10.Mann R.A., & Baver H.J. Phosphorus Removal in Constructed Wetlands using gravel industrial waste. Substrata. Wat. Sci. Tech. 27(1), 1993, p.107-113.
11.Bitton, G., Wastewater microbiology. Wiley-Liss, Inc., New York, U.S. 1994.
12.Smolders, G., M.C.M. van Loosdrecht and J.J. Heijnen, A metabolic model for the biological phosphorus removal process. Wat. Sci. Tech., Vol. 31(2) , 1995, p. 79- 93.
13.Mino, T., W. Liu, F. Kurisu and T. Matsuo, Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Wat. Sci. Tech., Vol. 31(2) , 1995, p. 25-34.
14.Barker, P. S. and P. L. Dold, Denitrification behaviour in biological excess phosphorus removal activated sludge systems. Wat. Res., Vol. 30(4) , 1996, p. 769-780.
15.Stumm, W. and Morgan, J.J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed. John Wiley & Sons, Inc., New York, 1996, p.778-783.
16.Galarneau E. and R. Gehr, Phosphorus removal from wastewaters: Experimental and theoretical support for alternative mechanisms. Wat. Res., Vol. 31(2) , 1997, p. 328-338.
17.Boisvert, J. P., T. To, A. Berrak and C. Jolicoeur, Phosphate adsorption in flocculation processes of aluminium sulphate and poly-aluminium-silicate-sulphate. Wat. Res., Vol. 31(8) , 1997, p. 1939-1946.
18.Kuba, T., M. C. M. Van Loosdrecht, F. A. Brandseb and J. J. Heijnen, Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Wat. Res., Vol. 31(4) , 1997, p. 777-786.
19.Rydina, E. and E. B. Welchb, Aluminum dose required to inactivate phosphate in lake sediments. Wat. Res., Vol. 32(10) , 1998, p. 2969-2976.
20.Brdjanovic, D., S. Logemann, Mark C. M. Van Loosdrecht, C. M. Hooijmans1, G. J. Alaerts1 and J. J. Heijnen, Influence of temperature on biological phosphorus removal: process and molecular ecological studies. Wat. Res., Vol. 32(4) , 1998, p. 1035-1048.
21.Mino, T., M. C. M. van Loosdrecht and J. J. Heijnen, Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res., Vol. 32(11) , 1998, p. 3193-3207.
22.Morse, G.K., Brett, S.W., Guy, J.A., and Lester, J.N., “Review: Phosphorus removal and recovery technologies”, The Science of the Total Environment 212, 1998, p.69-81.
23.Battistoni, P., P. Pavan, M. Prisciandaro and F. Cecchi, Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Wat. Res., Vol. 34(11) , 2000, p. 3033-3041.
24.Battistoni, P. et al., “Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants”, Water Research 34(11) , 2000, p.3033-3041.
25.Münch, E. V. and K. Barr, Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Wat. Res., Vol. 35(1) , 2001, p. 151-159.
26.Stratful, I., Scrimshaw, M.D., and Lester, J.N., “Conditions influencing the precipitation of magnesium ammonium phosphate”, Wat. Res. 35(17) , 2001, p.4191–4199.
27.Suzuki, K., Y. Tanaka, T. Osada and M. Waki, Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Wat. Res., Vol. 36(12) , 2002, p. 2991-2998.
28.Battistoni, P., A. De Angelis, M. Prisciandaro, R. Boccadoro and D. Bolzonella, P removal from anaerobic supernatants by struvite crystallization: long term validation and process modeling. Wat. Res., Vol. 36(8) , 2002, p. 1927-1938.
29.Saito, T., D. Brdjanovic and M.C.M. van Loosdrecht, Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Wat. Res., Vol. 38(17) , 2004, p. 3760-3768.
30.Chen, Y., Y. Chen, Q. Xu, Q. Zhou, G. Gu, Comparison between acclimated and unacclimated biomass affecting anaerobic-aerobic transformations in the biological removal of phosphorus. Process Biochem., Vol. 40, 2005, p. 723-732.
31.Katsuya Kaikake et al., Phosphate recovery from phosphorus-rich solution obtained from chicken mamure incineration ash, Waste Management, Volume 29, issue 3, March 2009, p.1084-1088.
32.Inglezakis, V.J., Stylianou, M., and Loizidou, M., “Hydrodynamic Studies on Zeolite Fluidized Beds”, INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 8, A126, 2010.
33.劉志忠,流體化床結晶法去除水中磷酸鹽之研究,碩士論文,國立中央大學環境工程研究所,1997。
34.邱維、張智,城市污水化學除磷的探討。重慶環境科學,第24卷第2期,p. 81-84, 2002.
35.徐豐果、羅建中、凌定勳,廢水化學除磷的現狀與進展。工業水處理,第23卷第5期,p.18-20, 2003.
36.行政院環境保護署,事業廢水污染預防及防治管理工作計畫 期末報告,計畫編號:EPA-94-G103-02-202,p. 89-90, 2005.
37.鄭敏、張代均,廢水化學法脫氮和化學法除磷的研究。科技情報開發與經濟,第16卷第1期,p.154-156, 2006.
38.李京雄、孫水裕、苑星海,城市生活污水化學除磷試劑的應用比較。廣東微量元素科學,第13卷第1期,p.19-22, 2006.
39.熊國祥、羅建中、馮愛坤,廢水除磷技術與研究動態。工業安全與環保,第32卷第10期,p. 19-21, 2006.
40.行政院環境保護署。半導體業研磨廢水及光電業廢水水質特性分析及管制標準探討計畫,未出版,2007。
41.張鈞期,不同金屬藥的流體化床結晶技術處理含磷廢水之研究碩士論文,國立成功大學化學工程研究所,2007。
42.阮國棟,張宣武,孫鴻玲,吳婉怡,林燕柔,涂舒宣,徐維駿,「磷的回收技術及其資源再生效益」,行政院環保署,環境科技論壇,2010。
43.友達光電股份有限公司。線上檢索日期:2012 年4 月21 日。網址:http://www.auo.com/?sn=47&lang=zh-TW