| 研究生: |
李鎮谷 Chen-Ku Li |
|---|---|
| 論文名稱: |
鐵基塊狀金屬玻璃熱塑成形性之研究 The study of thermoplastic forming ability on Fe-based bulk metallic glass |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 鐵基非晶質合金 、過冷液相區 、熱塑成形 |
| 外文關鍵詞: | Bulk amorphous steel, Supercooled liquid region,, Thermoplastic forming |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用真空電弧熔煉結合真空吸鑄法製備Fe41Cr15Mo14C12B9Co7Y2合金,經由X光繞射與示差掃瞄熱分析結果初步判定為非晶結構,進一步由DSC的分析可得知其玻璃形成能力指標Trg為0.59、γ為0.4、γm為0.69,且其過冷液相區(ΔTx)為74 K。為了進一步了解鐵基非晶質合金的熱塑形成能力,使用熱機械分析儀測量於過冷液相區,觀察樣品隨著溫度變化所產生的形狀變化,得知鐵基非晶質合金熱塑變形軟化點為903 K,鐵基非晶質合金的黏滯流黏度隨溫度與應變速率上升均呈現下降趨勢。
依據示差掃瞄熱分析與熱機械分析儀分析結果,在不同溫度(873 K、883 K、893 K與903 K)、不同應變速率下(5x10-2 s-1~1x10-3 s-1)下針對2 mm鐵基非晶質棒材進行壓縮測試,進一步探討在過冷液相區之變形行為。結果顯示,同溫度下,隨著應變速率上升、流變應力隨之增加;再者,當應變速率高於5x10-2 s-1時,所有試片於測試後均破裂。由於鐵基非晶質合金軟化點相對溫度較高,所需的升溫時間較長,鐵基非晶質合金內部開始產生結晶現象,因此當應變速率太低時會導致試片有硬化現象。綜觀加工溫度與應變速率工作窗,最佳熱塑成形加工條件為加工溫度873 K,應變速率2.5x10-3 s-1。
A Fe-based bulk amorphous steel (BAS), Fe41Cr15Mo14C12B9Co7Y2, was successfully fabricated by suction casting and confirmed its amorphous state by X-ray diffraction and differential scanning calorimetry analysis. The Tg, Tx, γ, γm and ΔT are 832 K, 906 K, 0.4, 0.69, and 74 K, respectively. The thermoplastic deformation during supercooled liquid region was firstly investigated by thermal mechanical analysis (TMA).
TMA results reveal that the viscosity decreases with increasing temperature under the same strain rate and no specimen is deformable under the strain rate of 5x10-2 s-1 or higher. Based on the TMA results, the lowest viscosity is about 5x1010 Pa‧s. The thermoplastic deformation behavior of Fe-based BAS was investigated at different temperatures within the supercooled temperature region (namely 873 K, 883 K, 893 K, 903 K) with different strain rate (5x10-2 s-1~1x10-3s-1). The Fe-based BAS only exhibits Newtonian flow at lower strain rate (less than 5x10-3 s-1 at 873 K~883 K, and less than 7.5x10-3 s-1 at 893 K~903 K). Moreover, the Fe-based BAS was fractured during thermoplastic forming process at strain rate higher than 5x10-2 s-1. TEM analysis were carry out for further investigating the amorphous state of the as cast sample and the sample after thermoplastic forming. The Fe-based BAS sample after thermoplastic forming at 903 K with 2.5x10-3 s-1 strain rate was found to have some nano-size crystalline particles embedded locally in amorphous matrix.
[1] A. C. Lund, "Topological and chemical arrangement of binary alloys during severe deformation", Journal of Applied Physics, Vol. 95 pp. 4815 (2004).
[2] H. S. Chen, H. J. Leamy, and C. E. Miller, "Preparation of glassy metals", Ann. Rev. Mater. Sci. 10:363-91 (1980).
[3] R. Babilas, R. Nowosielski, "Iron-based bulk amorphous alloys", Archives of materials science and engineering, Vol. 44 Issue 1 pp. 5-27 (2010).
[4] A. Inoue, K. Hashimoto, "Amorphous and Nanocrystalline Materials", (2001).
[5] C. Suryanarayana, A. Inoue, "Bulk metallic glasses", LLC, Taylor and Francis Group, (2011).
[6] M. Ylönen, T. Vähä-Heikkilä, H. Kattelus, "Amorphous metal alloy based MEMS for RF applications", Sensors and Actuators A, Vol. 132 pp. 283-288 (2006).
[7] G. Ruitenberg, P. D. Hey, F. Sommer, and J. Sietsma, "Pressure-Induced Structural Relaxation in Amorphous Pd40Ni40P20: The Formation Volume for Diffusion Defects", Physical review letters, Vol. 79 Number 24 (1997).
[8] 鄭振東編譯,"非晶質金屬漫談",建宏出版社,pp. 39,1990年。
[9] J. Kramer, "Produced the first amorphous metals through vapor deposition", Annalen of Physics, Vol. 411 pp. 37 (1934).
[10] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt", Journal of Research of the National Bureau of Standards, Vol. 44 pp. 109-122 (1950).
[11] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in solidified Gold-Silicon alloys", Nature, Vol. 187 pp. 869-870 (1960).
[12] H. S. Chen, "Glassy metals", Rep. Prog. Phys, Vol. 43 p. 364 (1980).
[13] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying", Applied Physics Letters, Vol. 43 pp. 1017-1019 (1983).
[14] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates," Materials Transactions JIM, Vol. 36 pp. 866-875 (1995).
[15] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method", Material Transactions JIM, Vol. 31 pp. 425-428 (1990).
[16] A. Inoue, A. Kato, T. Zhang, and S. G. Kim, "Mg-Cu-Y Amorphous Alloys With High Mechanical Strengths Produced by a Metallic Mold Casting Method", Materials Transactions JIM, Vol. 32 pp. 609-616 (1991).
[17] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method", Materials Transactions JIM, Vol. 33 pp. 937-945 (1992).
[18] A. Inoue, A. Takeuchi, "Recent development and application products of bulk glassy alloys", Acta Materialia, Vol. 59 pp. 2243-2267 (2011).
[19] A. Inoue, B. Shen, A. Takeuchi, "Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System", Materials Transactions, Vol. 47 pp. 1275-1285 (2006).
[20] A. Inoue, Y. Shinohara, J. S. Gook, "Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting", Material Transactions, Vol. 36 pp. 1427-1433 (1995).
[21] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy Principles, Third edition, p. 278 (1994).
[22] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys", Acta Materialia, Vol. 48 pp. 279-306 (2000).
[23] Q. Jing, Y. Zhang, D. Wang, and Y. Li, "A Study of the Glass Forming Ability in ZrNiAl Alloys", Materials Science and Engineering:A, Vol. 441 pp. 106-111 (2006).
[24] Z. P. Lu, C. T. Liu, "Role of minor alloying additions in formation of bulk metallic glasses: A Review", Journal of Material Science, Vol. 39 pp. 3965-3974 (2004).
[25] Z. P. Lu, C. T. Liu, W. D. Porter "Role of yttrium in glass formation of Fe-based bulk metallic glasses", Applied Physics Letters, Vol. 83 Number 13 pp. 2581-2583 (2003)
[26] J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang, "Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy", Applied Physics Letters, Vol. 86 pp. 151907-1-3 (2005).
[27] A. Inoue, Materials Transactions JIM, Vol. 36 pp. 866 (1995).
[28] Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses", Acta Materialia, Vol. 50 pp. 3501-3512 (2002).
[29] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass Forming Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol. 101 pp. 086108-1-3 (2007).
[30] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh, "Glass forming ability of bulk glass forming alloys", Scr Mater, Vol. 36 p. 783 (1997).
[31] S. Guo, Z. P. Lu, C. T. Liu, "Identify the best glass forming ability criterion", Intermetallics, Vol. 18 pp. 883-888 (2010).
[32] Y. Lu, Y. Huang, Wei Zheng, Jun Shen, "Free volume and viscosity of Fe-Co-Cr-Mo-C-B-Y bulk metallic glasses and their correlation with glass-forming ability", Journal of Non-Crystalline Solids, Vol. 358 pp. 1274-1277 (2012).
[33] Y. Kawamura, T. Itoi, T. Nakamura, A. Inoue, "Superplasticity in Fe-based metallic glass with wide supercooled liquid region", Materials Science and Engineering, A304-306 pp. 735-739 (2001).
[34] J. Buenz, K. A. Padmanabhan, G. Wilde, "On the applicability of a mesoscopic interface sliding controlled model for understanding superplastic flow in bulk metallic glasses", Intermetallics, Vol. 60 pp. 50-57 (2015).
[35] P. H. Tsai , A. C. Xiao , J. B. Li , J. S. C. Jang , J. P. Chu , J. C. Huang, "Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance", Journal of alloys and compounds, Vol. 586 pp. 94-98 (2014).
[36] J. S. C. Jang, C. F. Chang, Y. C. Huang, J. C. Huang, W.J. Chiang, C.T. Liu, "Viscous flow and microforming of a Zr-base bulk metallic glass", Intermetallics, Vol. 17 pp. 200-204 (2009).
[37] P. Murali, U. Ramamurty, "Embrittlement of a bulk metallic glass due to sub-Tg annealing", Acta Materialia, Vol. 53 pp. 1467-1478 (2005).
[38] Y. Kawamura, T. Nakamura, H. Kato, H. Mano, A. Inoue, "Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses", Materials Science and Engineering, A304-306 pp. 674-678 (2001).
[39] Y. Kawamura, T. Nakamura, A. Inoue, "Superplasticity in Pd40Ni40P20 metallic glass", Scripta Materialia, Vol. 39 No. 3 pp. 301-306 (1998).
[40] G. Wang, J. Shen, J. F. Sun , Y. J. Huang, J. Zou, Z. P. Lu, Z. H. Stachurski, B. D. Zhou, "Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region", Journal of Non-Crystalline Solids, Vol. 351 pp. 209-217 (2005).
[41] J. Shen, G. Wang, J. F. Sun, Z. H. Stachurskic, C. Yan, L.Ye, B. D. Zhou, "Superplastic deformation behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass in the supercooled liquid region", Intermetallics, Vol. 13 pp. 79-85 (2005).
[42] K. C. Chan, L. Liu, J. F. Wang, "Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region", Journal of Non-Crystalline Solids, Vol. 353 pp. 3758-3763 (2007).
[43] J. Ferenc, T. Erenc-Sedziak, M. Kowalczyk, T. Kulik, "The supercooled liquid region span of Fe-based bulk metallic glasses", Journal of Alloys and Compounds, Vol. 495 pp. 327-329 (2010).
[44] B. Bendjemil, A. Bouchareb, A. Belbah, J. Bougdira, R. Piccin, M. Baricco, "Crystallization Behavior of Fe50−𝑥Cr15Mo14C15B6M𝑥 (𝑥 = 0, 2 and M = Y, Gd) BMG and ribbons by in situ high temperature X-ray diffraction", Chinese Physics Letters. Vol. 29 No. 10 pp. 108-103 (2012).
[45] P. S. Singh, R. L. Narayan, Indrani Sen, D. C. Hofmann, U. Ramamurty, "Effect of strain rate and temperature on the plastic deformation behaviour of a bulk metallic glass composite", Materials Science and Engineering, A 534 pp. 476-484 (2012).
[46] D. V. Louzguine-Luzgin, A. I. Bazlov, S. V. Ketov, A. Inoue, "Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability", Materials Chemistry and Physics, Vol. 162 pp. 197-206 (2015).
[47] J. D. Ju, "Shear transformation zones in metallic glasses", (2014).
[48] S. Xie, E. P. George, "Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing", Acta Materialia, Vol. 56 pp. 5202-5213 (2008).
[49] B. G. Yoo, J. I. Jang, "A study on the evolution of subsurface deformation in a Zr-based bulk metallic glass during spherical indentation", Journal of Physics D: Applied Physics, Vol. 41 pp. 7 (2008).
[50] M. Stoica, N. V. Steenberge, J. Bednarcik, N. Mattern, H. Franz, J. Eckert, "Changes in short-range order of Zr55Cu30Al10Ni5 and Zr55Cu20Al10Ni10Ti5 BMGs upon annealing", Journal of Alloys and Compounds, Vol. 506 pp. 85-87 (2010).
[51] G. Kumar, P. Neibecker, Y. H. Liu, J. Schroers, "Critical fictive temperature for plasticity in metallic glasses", Nature Communications 4, article number 1536 (2013).
[52] Y. Lu, Y. Huang, X. Lu, Z. Qin, J. Shen, "Specific heat capacities of Fe–Co–Cr–Mo–C–B–Y bulk metallic glasses and their correlation with glass-forming ability", Materials Letters, Vol. 143 pp. 191-193 (2015).
[53] Y. Lu, Y. Huang, J. Shen, X. Lu, Z. Qin, Z. Zhang, "Effect of Co addition on the shear viscosity of Fe-based bulk metallic glasses", Journal of Non-Crystalline Solids, Vol. 403 pp. 62-66 (2014).
[54] S. V. Ketov, A. Inoue, H. Kato, D. V. Louzguine-Luzgin, "Viscous flow of Cu55Zr30Ti10Co5 bulk metallic glass in glass-transition and semi-solid regions", Scripta Materialia, Vol. 68 pp. 219-222 (2013).
[55] J. Pan, Q. Chen, L. Liu, Y.Li, "Softening and dilatation in a single shear band", Acta Materialia, Vol. 59 pp. 5146-5158 (2011).
[56] S. F. Guoa, K. C. Chan, L. Liu, "Notch toughness of Fe-based bulk metallic glass and composites", Journal of Alloys and Compounds, Vol. 509 pp. 9441-9446 (2011).
[57] B. Shen, C. Chang, A. Inoue, "Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)-B-Si-Nb bulk glassy alloys", Intermetallics, Vol. 15 pp. 9-16 (2007).
[58] H. Kato, A. Inoue, H.S. Chen, "Softening and heating behaviors during the nonlinear viscous flow in a Zr-based bulk metallic glass", Journal of Non-Crystalline Solids, Vol. 353 pp. 3764-3768 (2007).
[59] A. S. Argon, "Plastic deformation in metallic glasses", Acta Metall, Vol. 27 pp. 47-58 (1979).
[60] 黃宥棋, "Thermal plastic behavior and microstructure of (Zr53Cu30Ni9Al8)99.5Si0.5 bulk metallic glass", (2008).
[61] 李威錚, "Thermal plastic behavior and microstructure of Mg58Cu28.5Gd11Ag2.5 metallic glass with porous Mo particles", (2008).
[62] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, "Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication", Materials Science and Engineering, A449–451 pp. 898–902 (2007).