跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張育晟
Yo-Cheng Zhang
論文名稱: Navier-Stokes 方程组弱解的存在性
On The Existence Of Solutions For Navier-Stokes Equations
指導教授: 鄭經斅
Ching-hsiao Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 99
語文別: 英文
論文頁數: 59
中文關鍵詞: 可壓縮整體存在性
外文關鍵詞: compressible, global in time existence, Navier-Stokes
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇研究報告中,我們仔細檢視了 P.L. Lions [Lio98] 與 E. Feireisl [FNP01] 對可壓縮等熵 Navier-Stokes 方程組弱解整體存在性的證明。Lions [Lio98] 證明了在三維空間中,當熱容比大於 9/5,而且初值所對應的動能與位能是有限的,則方程組的弱解在任意時間內都存在。之後,Feireisl把 Lions 的結果推廣到熱容比大於 3/2 的情形。本文按 E. Feireisl [FNP01] 與 A. Novotny [NS04] 的證明方式,試著給予一個比較詳細的過程。


    Abstract In this survey artical, we scrutinize the paper by P.L. Lions [Lio98] and E. Feireisl [FNP01] that contribute to the global in time existence of solutions for the compressible isentropic Navier-Stokes equations. If initial data has finite energy, Lions obtained global existence of weak solutions when the adiabatic constant gamma>9/5 . The result was later improved by Feireisl for gamma>3/2. This artical is intended to give some more details about the proofs of the global in time existence by E. Feireisl [FNP01] and A. Novotny [NS04].

    中文摘要.........................................................................................................i 英文摘要........................................................................................................ii Contents..........................................................................................................iii 1. Introduction..............................................................................................p.2 2. Main results............................................................................................p.11 3. Galerkin method.....................................................................................p.16 4. Compactness of weak solutions..............................................................p.23 5. Renormalized continuity equation..........................................................p.34 6. Vanishing articial pressure limit.............................................................p.39 References..................................................................................................p.57

    [Eva98] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics,
    Volume 19, AMS, Providence, 1998.
    [FNP01] E. Feireisl, A.Novotny and H. Petzeltova, On the Existence of Globally Defined
    Weak Solutions to the Navier-Stokes Equations. J. Math. Fluid Mech. 3 (2001)
    358–392.
    [Fei04a] E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid.
    Indiana Univ. Math. J., 53(6):1705-1738, 2004.
    [Fei04b] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press,
    Oxford, 2004.
    [FN09] E. Feireisl and A. Novotny, Singular Limits in Thermodynamics of Viscous Flu-
    ids, Birkhauser Verlag, Basel, 2009.
    [Gal94] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes
    equations, I. Springer-Verlag, New York, 1994.
    [Hof87] D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equa-
    tions with large initial data. Trans. Amer. Math. Soc., 303(1):169-181, 1987.
    [Hof95] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional
    compressible flow with discontinuous initial data. J. Differential Equations,
    120(1):215-254, 1995.
    [Hof98] D. Hoff, Global solutions of the equations of one-dimensional, compressible flow
    with large data and forces, and with differing end states. Z. Angew. Math. Phys.,
    49(5):774-785, 1998.
    [HS01] D. Hoff and J. Smoller, Non-formation of vacuum states for com- pressible
    Navier-Stokes equations. Comm. Math. Phys., 216(2):255–276, 2001.
    [KS77] A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect
    to time of initial-boundary value problems for one-dimensional equations of a
    viscous gas. Prikl. Mat. Meh., 41(2):282-291, 1977.
    [KJF77] A. Kufner, O. John, and S. Fucik, Function Spaces, Academia, Prague., 1977.
    [Lio96] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible
    models, Oxford University Press, Oxford, 1996.
    [Lio98] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible
    models, Oxford University Press, Oxford, 1998.
    [Lun95] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Prob-
    lems. Birkhauser, Basel, 1995.
    [MN79] A. Matsumura and T. Nishida, The initial value problem for the equations of
    motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad.
    Ser. A Math. Sci., 55(9):337-342, 1979.
    [Mur81] F. Murat, Compacite par compensation: condition necessaire et suffsante de
    continuite faible sous une hypothese de rang constant, Ann. Sc. Norm Super.
    Pisa, Cl. Sci., IV. Ser. 8 (1981), 69–102.
    [NS04] A. Novotny and I. Straskraba, Introduction to the mathematical theory of com-
    pressible flow. Oxford University Press, Oxford, 2004.
    [Rud91] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill Inc., New York, 1991.
    [Ser86a] D. Serre, Solutions faibles globales des equations de Navier-Stokes pour un fluide
    compressible. C. R. Acad. Sci. Paris Ser. I Math., 303(13):639-642, 1986.
    [Ser86b] D. Serre, Sur l’equation monodimensionnelle d’un fluide visqueux, compressible
    et conducteur de chaleur. C. R. Acad. Sci. Paris Ser. I Math., 303(14):703-706,
    1986.
    [She82] V. V. Shelukhin, Motion with a contact discontinuity in a viscous heat conduct-
    ing gas. Dinamika Sploshn. Sredy, (57):131-152, 1982.
    [She83] V. V. Shelukhin, Evolution of a contact discontinuity in the barotropic flow of
    a viscous gas. Prikl. Mat. Mekh., 47(5):870-872, 1983.
    [She84] V. V. Shelukhin, On the structure of generalized solutions of the one-dimensional
    equations of a polytropic viscous gas. Prikl. Mat. Mekh., 48(6):912-920, 1984.
    [She86] V. V. Shelukhin, Boundary value problems for equations of a barotropic viscous
    gas with nonnegative initial density. Dinamika Sploshn. Sredy, (74):108-125,
    162-163, 1986.
    [Sim86] J. Simon, Compact sets in the space Lp
    (0; T;B). Ann. Mat. Pura Appl. 146
    (1986), 65-96.
    [Sol76] V. A. Solonnikov, The solvability of the initial-boundary value problem for the
    equations of motion of a viscous compressible fluid. Zap. Naucn. Sem. Leningrad.
    Otdel. Mat. Inst. Steklov. (LOMI), 56:128-142, 197, 1976. Investigations on
    linear operators and theory of functions, VI.
    [Ste70] E.M. Stein, Singular integrals and differential properties of functions. Princeton
    University Press, Princeton, 1970.
    [Tem01] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Ameri-
    can Mathematical Society, 2001.
    [Zie89] W.P. Ziemer, Weakly differentiable functions. Springer-Verlag, New York, 1989.

    QR CODE
    :::