| 研究生: |
張育晟 Yo-Cheng Zhang |
|---|---|
| 論文名稱: |
Navier-Stokes 方程组弱解的存在性 On The Existence Of Solutions For Navier-Stokes Equations |
| 指導教授: |
鄭經斅
Ching-hsiao Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 可壓縮 、整體存在性 |
| 外文關鍵詞: | compressible, global in time existence, Navier-Stokes |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇研究報告中,我們仔細檢視了 P.L. Lions [Lio98] 與 E. Feireisl [FNP01] 對可壓縮等熵 Navier-Stokes 方程組弱解整體存在性的證明。Lions [Lio98] 證明了在三維空間中,當熱容比大於 9/5,而且初值所對應的動能與位能是有限的,則方程組的弱解在任意時間內都存在。之後,Feireisl把 Lions 的結果推廣到熱容比大於 3/2 的情形。本文按 E. Feireisl [FNP01] 與 A. Novotny [NS04] 的證明方式,試著給予一個比較詳細的過程。
Abstract In this survey artical, we scrutinize the paper by P.L. Lions [Lio98] and E. Feireisl [FNP01] that contribute to the global in time existence of solutions for the compressible isentropic Navier-Stokes equations. If initial data has finite energy, Lions obtained global existence of weak solutions when the adiabatic constant gamma>9/5 . The result was later improved by Feireisl for gamma>3/2. This artical is intended to give some more details about the proofs of the global in time existence by E. Feireisl [FNP01] and A. Novotny [NS04].
[Eva98] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics,
Volume 19, AMS, Providence, 1998.
[FNP01] E. Feireisl, A.Novotny and H. Petzeltova, On the Existence of Globally Defined
Weak Solutions to the Navier-Stokes Equations. J. Math. Fluid Mech. 3 (2001)
358–392.
[Fei04a] E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid.
Indiana Univ. Math. J., 53(6):1705-1738, 2004.
[Fei04b] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press,
Oxford, 2004.
[FN09] E. Feireisl and A. Novotny, Singular Limits in Thermodynamics of Viscous Flu-
ids, Birkhauser Verlag, Basel, 2009.
[Gal94] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes
equations, I. Springer-Verlag, New York, 1994.
[Hof87] D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equa-
tions with large initial data. Trans. Amer. Math. Soc., 303(1):169-181, 1987.
[Hof95] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional
compressible flow with discontinuous initial data. J. Differential Equations,
120(1):215-254, 1995.
[Hof98] D. Hoff, Global solutions of the equations of one-dimensional, compressible flow
with large data and forces, and with differing end states. Z. Angew. Math. Phys.,
49(5):774-785, 1998.
[HS01] D. Hoff and J. Smoller, Non-formation of vacuum states for com- pressible
Navier-Stokes equations. Comm. Math. Phys., 216(2):255–276, 2001.
[KS77] A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect
to time of initial-boundary value problems for one-dimensional equations of a
viscous gas. Prikl. Mat. Meh., 41(2):282-291, 1977.
[KJF77] A. Kufner, O. John, and S. Fucik, Function Spaces, Academia, Prague., 1977.
[Lio96] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible
models, Oxford University Press, Oxford, 1996.
[Lio98] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible
models, Oxford University Press, Oxford, 1998.
[Lun95] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Prob-
lems. Birkhauser, Basel, 1995.
[MN79] A. Matsumura and T. Nishida, The initial value problem for the equations of
motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad.
Ser. A Math. Sci., 55(9):337-342, 1979.
[Mur81] F. Murat, Compacite par compensation: condition necessaire et suffsante de
continuite faible sous une hypothese de rang constant, Ann. Sc. Norm Super.
Pisa, Cl. Sci., IV. Ser. 8 (1981), 69–102.
[NS04] A. Novotny and I. Straskraba, Introduction to the mathematical theory of com-
pressible flow. Oxford University Press, Oxford, 2004.
[Rud91] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill Inc., New York, 1991.
[Ser86a] D. Serre, Solutions faibles globales des equations de Navier-Stokes pour un fluide
compressible. C. R. Acad. Sci. Paris Ser. I Math., 303(13):639-642, 1986.
[Ser86b] D. Serre, Sur l’equation monodimensionnelle d’un fluide visqueux, compressible
et conducteur de chaleur. C. R. Acad. Sci. Paris Ser. I Math., 303(14):703-706,
1986.
[She82] V. V. Shelukhin, Motion with a contact discontinuity in a viscous heat conduct-
ing gas. Dinamika Sploshn. Sredy, (57):131-152, 1982.
[She83] V. V. Shelukhin, Evolution of a contact discontinuity in the barotropic flow of
a viscous gas. Prikl. Mat. Mekh., 47(5):870-872, 1983.
[She84] V. V. Shelukhin, On the structure of generalized solutions of the one-dimensional
equations of a polytropic viscous gas. Prikl. Mat. Mekh., 48(6):912-920, 1984.
[She86] V. V. Shelukhin, Boundary value problems for equations of a barotropic viscous
gas with nonnegative initial density. Dinamika Sploshn. Sredy, (74):108-125,
162-163, 1986.
[Sim86] J. Simon, Compact sets in the space Lp
(0; T;B). Ann. Mat. Pura Appl. 146
(1986), 65-96.
[Sol76] V. A. Solonnikov, The solvability of the initial-boundary value problem for the
equations of motion of a viscous compressible fluid. Zap. Naucn. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI), 56:128-142, 197, 1976. Investigations on
linear operators and theory of functions, VI.
[Ste70] E.M. Stein, Singular integrals and differential properties of functions. Princeton
University Press, Princeton, 1970.
[Tem01] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Ameri-
can Mathematical Society, 2001.
[Zie89] W.P. Ziemer, Weakly differentiable functions. Springer-Verlag, New York, 1989.