跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃致維
Chih-Wei Huang
論文名稱: 利用合成岩體模擬橫向等向性岩體之基礎承載力
指導教授: 田永銘
Yong-Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 179
中文關鍵詞: 合成岩體PFC3D橫向等向性正定性基礎承載力
外文關鍵詞: synthetic rock mass, PFC3D, transversely isotropic, constitutive law, bearing capacity
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 岩體因微觀組構優選方位或不連續面在力學、水力傳導等性質受方向所控制,我們稱之為岩體之異向性。而基礎工程配置的方位與異向性岩體之關係亦將顯著影響基礎之承載行為,因此如何評估不連續面在何種方位條件下係屬有利或不利的等級,為基礎工程成敗與否的關鍵因素。
    本研究利用PFC3D模擬橫向等向性岩體之力學行為及基礎承載行為。首先進行單壓試驗之模擬,以檢核顆粒微觀參數所體現之巨觀岩石力學行為,再求取一系列彈性常數建立橫向等向性岩體之組成律,並與過往理論進行驗證。接著針對不同裂隙位態(走向、傾角)及裂隙條件(裂隙程度、費雪常數),進行一系列極限承載力之模擬試驗,以探討不連續面幾何特徵對承載力、沉陷量及裂縫發展之影響。
    數值分析結果顯示:(1)含單一裂隙方向之岩體,其力學行為可視為巨觀橫向等向性,組成律柔度矩陣符合正定性,且變形性符合異向性彈性力學之預測。(2)針對Asan片麻岩室內實驗之結果進行力學行為之擬合,說明了合成岩體可以模擬出真實岩體之力學行為。(3)完整岩體之極限承載力與Bell solution (1915)計算得到之理論強度極為接近,且裂縫發展過程與Goodman (1989)描述之破壞過程相符合。(4)橫向等向性岩體之極限承載力與傾角呈異向性關係,而極限狀態下的裂縫數及沉陷量與傾角之關係亦然。(5)觀察不同傾角之岩體於承載試驗下之裂縫發展,發現裂縫會沿著原生裂隙方向生成,且與Bray solution (1977)計算得到之等值應力方向一致。(6)隨著裂隙條件(P32、κ)的增加,承載力的異向性亦隨之增加,且裂縫發展的方向性更為明顯。(7)傾角α (°)對於承載力的影響大於裂隙走向與基礎長軸之夾角γ (°),且同傾角下之γ (°)於較大的角度時,承載力普遍大於較小的γ (°)。(8)基礎配置方向對承載力亦有相當之影響,其配置方向與裂隙走向垂直較與走向平行為佳,故本文提出傾角與基礎配置方向優劣分級。


    The properties of rock mass such as mechanical behavior and hydraulic conductivity are controlled by the direction because of the orientation of discontinuities. The relationship between the orientation of the foundation configuration and the anisotropic rock mass will also significantly affect the bearing behavior. Therefore, how to evaluate the orientation of discontinuity is favorable or unfavorable playing an important role in rock engineering.
    PFC3D is adopted in this study to simulate uniaxial compressive tests, triaxial compressive tests and bearing capacity tests on transversely isotropic rock mass. The simulation of the rock test is used to check the macroscopic rock mechanical behavior by the microscopic parameters of the particles. Through the simulations, we obtain a series of elastic constants to establish the constitutive law of transversely isotropic synthetic rock mass, and verify with the previous theories. In addition, this study carries out a series of simulation tests on the ultimate bearing capacity. By adjusting different fracture orientation (dip angles and strike) and fracture condition (fracture intensity and Fisher constant) respectively, we can discuss the influences of the discontinuity on the bearing capacity, settlement, and crack development.
    Based on the numerical simulation results:(1) The mechanical behavior of rock mass which involves the single direction of DFN is regarded as transversely isotropy, and the deformability conforms to the prediction of anisotropic elastic mechanics. (2) The experimental results of Asan gneiss can be fitting by using SRM, it illustrates that SRM can simulate the mechanical behavior of real rock mass. (3) The bearing capacity of the intact rock is close to the theoretical strength calculated by Bell solution (1915), and the development of cracks can be compared with the footing test results observed by Goodman (1989). (4) In a transversely isotropic rock, the relationship between ultimate bearing capacity and joint dip angles shows U-type. In addition, the crack number and settlement with different joint dip angles reveal the analogous shape of ultimate bearing capacity. (5) Observing the development of cracks in rock masses with different joint dip angles from bearing capacity tests. It shows that the cracks will be generated along the direction of the inherent fractures, which is consistent with the equivalent stress direction calculated by Bray solution (1977). (6) With the fracture condition (P32、κ) increases, the anisotropy of bearing capacity will be increased, and the direction of crack development will become more obvious. (7) The influence of the α (dip angle) on the bearing capacity is greater than the γ (the angle between the strike and the long axis of the foundation). When γ at the larger angle, the bearing capacity is generally higher than the γ at the smaller angle. (8) The configuration direction of the foundation also has the significant influence on the bearing capacity. When the foundation vertical to the strike, the bearing capacity will be better than it parallel to the strike.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XVII 第一章、緒論 1 1.1 研究動機 1 1.2 研究方法與目的 3 1.3 研究架構 4 第二章、文獻回顧 5 2.1 合成岩體 5 2.2 岩石基礎之破壞模式 10 2.3 岩石基礎承載行為 14 2.4 異向性介質之應力增量 19 2.5 基礎承載相關研究 23 2.6 橫向等向性岩石材料 28 2.6.1 彈性常數決定 28 2.6.2組成律與正定性 31 2.6.3 Jaeger(1960)破壞準則 35 第三章、數值分析方法與模型建立 38 3.1 研究流程 38 3.2 模型建構 40 3.3 參數設定 47 第四章、橫向等向性岩體之擬合 50 4.1 Asan片麻岩之力學性質 50 4.2 參數研究 53 4.2.1 SJM摩擦角之影響 53 4.2.2 SJM勁度比之影響 59 4.2.3 裂隙直徑之影響 68 4.3 力學行為之擬合 74 4.3.1單壓試驗下之力學性質 74 4.3.2橫向等向性彈性常數求取 76 4.3.3組成律正定性檢核 78 4.3.4數值模擬與實驗結果之比較 80 第五章、基礎承載行為之模擬結果 83 5.1 合成岩體之力學性質 83 5.2 完整岩石之基礎承載力模擬. 90 5.3 橫向等向性岩體之基礎承載行為 93 5.3.1裂縫發展過程與傾角之關係 93 5.3.2承載行為與傾角之關係 104 5.3.3破壞模態與應力分布之關係 107 5.4 裂隙程度之影響 112 5.5 費雪常數之影響 128 5.6 走向及傾角與承載力之關係 143 第六章、結論與建議 148 6.1 結論 148 6.2 建議 152 參考文獻 153

    1. 田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體模式決定表徵單元體尺寸(Ⅱ、Ⅲ)」,科技部專題研究計畫期中報告,MOST 107-2221-E-008-020-MY2 (2019)。
    2. 吳柏翰,「正交性合成岩體之模擬技術」,國立中央大學土木工程系,碩士論文,中壢(2019)。
    3. 張振成,「膠結不良砂岩的淺基礎承載力」,博士論文,國立交通大學土木工程研究所,新竹(2008)。
    4. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程學系,中壢(2005)。
    5. 劉家豪,「橫向等向性合成岩體之力學行為及其變異性」,國立中央大學土木工程系,碩士論文,中壢(2019)。
    6. 鄭華恩,「以合成岩體探討裂隙岩體的力學行為」,碩士論文,國立中央大學土木工程學系,中壢(2019)。
    7. 鄭華恩、田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體探討裂隙岩體的力學行為」,第十四屆岩盤工程研討會,國立成功大學,台南(2018)。
    8. 盧育辰,「以UDEC模擬互層材料之力學行為」,碩士論文,國立中央大學土木工程研究所,中壢(2009)。
    9. 簡宜嫻,「膠結不良軟岩之彈塑性模式與基礎承載模擬應用」,碩士論文,國立交通大學土木工程研究所,新竹(2002)。
    10. 蘇正中,「傾斜互層地層之承載力分析」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
    11. Amadei, B., “Importance of Anisotropy When Estimating and Measuring in Situ Stresses in Rock,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 33, No. 3, pp. 293-325 (1996).
    12. Amadei, B., “Influence of Rock Anisotropy on Stress Measurements by Overcoring Techniques,” Rock Anisotropy and the Theory of Stress Measurements, Springer, Berlin, Heidelberg, pp. 189-241(1983).
    13. Amadei, B., Savage, W.Z., and Swolfs, H.S., “Gravitational stress in anisotropic rock masses,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 24, pp. 5-14 (1987)
    14. Bell, F. G., Engineering in Rock Masses, Butterworth – Heinemann, Oxford (1992).
    15. Bieniawski, Z.T., Engineering Rock Mass Classifications, A Wiley-interscience publication, American, pp.7 (1989).
    16. Boussinesq, M.J., Applications des potentials, a l’etude de l’equilibre et du movement des solides elastique. Gauthier-Villars, Paris (1885).
    17. Bozozuk, M., The Gloucester Test Fill, PhD thesis, Purdue University (1972).
    18. Bray, J., Unpublished notes, Imperial College, London (1977).
    19. Cho, J.W., Kim, H., Jeon, S., and Min, K.B., “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics & Mining Sciences, Vol. 50, pp.158-169 (2012).
    20. Damjanac, B. and Cundall, P.A., “Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs,” Computers and Geotechnics, Vol. 71, pp. 283-294 (2016).
    21. Davis, E.H., “A Note on Some Plasticity Solutions Relevant to the Bearing Capacity of Brittle and Fissured Materials,” International Conference on Structural Foundations on Rock, Sydney, pp. 83~90 (1980).
    22. Deere, D.U. and Miller, R.P., “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report No. AFNL-TR-65-116, Albuquerque, NM. (1966).
    23. Einstein, H.H., and Baecher, G.B., “Probabilistic and statistical methods in engineering geology,” Rock Mech Rock Eng, Vol. 16, pp.39-72 (1983).
    24. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” Int J Rock Mech Min Sci, Vol. 47, pp. 915-926 (2010).
    25. Gaziev, E. and Erlikhman, S., “Stresses and strains in anisotropic foundations.” Proc. Symp. on Rock Fracture, ISRM, Nacy, Paper II–1 (1971).
    26. Goodman, R. E., Introduction to Rock Mechnics, 2nd edn, John Wiley, Chichester, pp. 562 (1989).
    27. Goodman, R.E. Introduction to Rock Mechanics, Wiley, New York, pp. 8–305 (1980).
    28. Hoek, E., and Brown E.T., “Practical Estimates of Rock Mass Strength,” Int J Rock Mech Min Sci, Vol. 34, No. 8, pp. 171-180 (1997).
    29. Huang, D., Wang, J., and Liu, Su., “A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses,” Granular Matter, Vol. 17(6), pp. 775-791 (2015).
    30. International Society for Rock Mechanics (ISRM) Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses (ed. E. T. Brown). Pergamon Press, Oxford, UK, pp. 211 (1981a).
    31. Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions), Version 5.0, MN 55401 (2013).
    32. Ivars, D.M., Pierce, M.E., and Darcel, C., “Anisotropy and scale dependency in jointed rock-mass strength – A Synthetic Rock Mass Study,” In: Proceedings of the 1st International FLAC/DEM Aymposium on Numerical Modeling, pp. 231-239 (2008).
    33. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48(2), pp. 219-244 (2011).
    34. Javid, A. H., Fahimifar, A., and Imani, M., “Numerical investigation on the bearing capacity of two interfering strip footings resting on a rock mass,” Computers and Geotechnics, Vol. 69, pp. 514–528 (2015).
    35. Kulatilake, P.H.S.W., Malama, B., and Wang, J., “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading,” Int J Rock Mech Min Sci, Vol. 38, pp. 641-657 (2001).
    36. Kulhawy, F.H. and Goodman, R.E., Design of foundations on discontinuous rock. Proc. Int. Conf. on Structural Foundations on Rock, Sydney, pp. 20–209 (1980).
    37. Ladanyi, B. and Roy, A., Some aspects of the bearing capacity of rock mass. Proc. 7th Canadian Symp. Rock Mechanics, Edmonton (1971).
    38. Lei, Q., Latham, J.P., and Tsang, C.F., “The use of discrete fracture networks for modelling coupled geomechanical and hydrological behavior of fractured rocks,” Computers and Geotechnics, Vol. 85, pp. 151-176 (2017).
    39. Mar Ivars, D. M., Pierce, M., De Gagne, D. and Darcel, C., “Anisotropy and scale dependency in jointedrock mass strength-a synthetic rock massstudy,” Proceedings of the First International FLAC/DEM Symposium, Minneapolis, USA (2008).
    40. Mar Ivars, D. M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P. and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, pp. 219-244 (2011).
    41. Miranda, T. S., Santos, R. F., Barbosa, J. A., Gomes, I. F., Alencar, M. L., Correia, O. J., Falcão, T. C., Gale, J. F. W., and Neumann, V. H., “Quantifying aperture, spacing and fracture intensity in a carbonate reservoir analogue: Crato Formation, NE Brazil,” Marine and Petroleum Geology, 97(May), pp. 556–567 (2018).
    42. Morgan, J.R. and Scala, A.J., “Flexible pavement behavior and application of elastic theory—a review,” Proc. 4th Conf. of the Australian Road Research Board, Melbourne 4, Part 2, pp. 1201 (1968).
    43. Park, E.S., Martin, C.D., and Christiansson, R., “Simulation of the mechanical behavior of discontinuous rock masses using a bonded-particle model,” Proceedings of the 6th North American rock mechanics symposium, Houston, USA, ARMA 04–480 (2004).
    44. Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
    45. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
    46. Poulsen, B.A., Adhikary, D.P., Elmouttie, M.K. and Wilkins, A., “Convergence of synthetic rock mass modelling and the Hoek-Brown strength criterion,” International Journal of Rock Mechanics and Mining Sciences, Vol. 80, pp. 171-180 (2015).
    47. Rollins, K., Clayton, R., Mikesell, R., and Blaise, B., “Drilled Shaft Side Friction in Gravelly Soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, no. 1, pp. 987–1003 (2005).
    48. Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
    49. Sowers George F., Introductory Soil Mechanics and Foundation, 4th Edition, Macmillan, New York (1979).
    50. Sowers, G.F., Foundation bearing in weathered rock. Proc. of Specialty Conf. on Rock Eng. for Foundations and Slopes, ASCE, Geotech. Eng. Div., Boulder CO., Vol. II, pp. 32–41 (1976).
    51. Sowers, G.F., Introductory Soil Mechanics and Foundations, Macmillan New York, pp. 6–395 (1970).
    52. Sutcliffe, D. J., Yu, H. S., and Sloan, S. W., “Lower bound solutions for bearing capacity of jointed rock,” Computers and Geotechnics, Vol. 31, no. 1, pp. 23–36 (2004).
    53. Terzaghi, K., Theoretical Soil Mechanics, John Wiley, New York (1943).
    54. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” Int J Rock Mech Min Sci, Vol. 38(3), pp. 399-412 (2001).
    55. Tien, Y.M., Kuo, M. C., and Lu, Y.C., “Chapter 16: Failure criteria for transversely isotropic rock,” Rock Mechanics and Engineering, Volume 1: Principles, Ed. Feng, X.T., CRC Press, London, pp. 451-477 (2016).
    56. Vazaios, I., Farahmand, K., Vlachopoulos, N., and Diederichs, M.S., “Effects of confinement on rock mass modulus: A synthetic rock mass (SRM) modelling study,” Journal of Rock Mechanics and Geotechnical Engineering, University of Queen, Kingston, Canada, pp. 436-456 (2018).
    57. Wyllie, D. C., Foundations on Rock, Chapman & Hall, London (1992).
    58. Wyllie, D.C, and Mah, C. W., Rock Slope Engineering (4th ed.), Taylor & Francis e-Library, pp. 130-242 (2005).

    QR CODE
    :::