| 研究生: |
蘇昌信 Chang-Hsin Su |
|---|---|
| 論文名稱: |
在無線感測器網路中利用機器人收集資料之通訊協定 Data Gathering Protocols by Mobile Robot in Wireless Sensor Networks |
| 指導教授: |
許健平
Jang-Ping Sheu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 資料收集 、無線感測器網路 、機器人 |
| 外文關鍵詞: | Mobile robot, Wireless sensor networks, Data gathering |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線感測器網路 (Wireless Sensor Networks)是由許多感測器(Sensor
node)所組成,而這些感測器一般都以電池當作主要的能量來源。在收集感測器
所感測到的資料過程中,通常是利用無線通訊來進行資料的收集。但是,由於
無線通訊所耗費的能量佔感測器總耗電量很大的部份,若是完全利用
multi-hop routing 的機制將資料傳送到基地台(Base Station),會造成基地
台附近的感測器因為時常幫忙代傳資料,使得自身能量消耗太快而喪失功能。
因此,利用機器人來收集資料,不旦可以減少整體網路的能量消秏,而且能夠
增加網路的生命期。在這篇論文中,我們提出了兩個利用機器人收集資料的通
訊協定,針對機器人收集資料的路徑做規劃,並且結合k-hop 代傳機制來增加
機器人收集資料的效能,降低感測資料因為代傳的能量耗費。所謂k-hop 代傳
機制,就是每個感測器將資料傳送到機器人最多只能被代傳k-hop,其中k 值
是由使用者自行決定。經由模擬證明,我們提出的資料收集通訊協定,確實可
以減少資料代傳的hop 數,而且所規劃出來的資料收集路徑,確實可以讓機器
人不用經過網路中的每一個感測器,也能夠收集完整個網路的資料。
A wireless sensor network is composed of many small, inexpensive, battery-powered sensor
nodes that are capable of sensing, computation, and communication. In data gathering
protocols, the communication power is usually a significant component of the total power
consumed in a sensor network. Hence, using mobile robot to gather the sensing data from
sensor nodes can efficiently reduce the network energy consumption and extend the network
lifetime. In this thesis, we propose two data gathering protocols: Infrastructure Data Gathering
Protocol (IDGP) and Distributed Data Gathering Protocol (DDGP) to plan the data
gathering path of the mobile robot. Our proposed protocols use the k-hop mechanism to
increase the efficiency of the mobile robot to collect the sensing data. The k-hop mechanism
is that the sensing data of a sensor node are transmitted to the mobile robot only up to k-hops
at most, where k is a user-specified parameter. The advantages of our protocols are that we
restrict the hop counts of the sensing data transmission by k hops, which reduce energy consumption
in multi-hop routing. Besides, in our protocols, sensor nodes’ data transmission
can cooperate with mobile robot’s data gathering path, which increases the efficiency of mobile
robot to collect the data. Simulation results show our data gathering protocols enables
the sensor nodes to transmit the data with less number of hops and simultaneously satisfy a
desired value of path length to cover the network by a mobile robot.
[1] A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem, “Distributed Online Localization in Sensor Networks Using a Moving Target,” in Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (IPSN), pp.61-70, Berkeley, California, USA, April 2004.
[2] A. Kansal, A. A. Somasundara, D. D. Jea, M. B. Srivastava, and D. Estrin, “Intelligent Fluid Infrastructure for Embedded Networks,” in Proceedings of the 2nd International Conference on Mobile Systems (MobiSys), pp.111-124, Boston, MA, USA, June 2004.
[3] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors,” in Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MOBICOM), pp.166-179, Rome, Italy, July 2001.
[4] A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Using Predictable Observer Mobility for Power Efficient Design of Sensor Networks,” in Proceedings of the 2nd International Workshop on Information Processing in Sensor Networks (IPSN), pp.129-145, Palo Alto, CA, USA, April 2003.
[5] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless Sensor Networks for Habitat Monitoring,” in Proceedings of 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), pp.88-97, Atlanta, GA, USA, September 2002
[6] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS: Security Protocols for Sensor Networks,” Wireless Networks, Vol. 8, No. 5, pp.521-534, September 2002.
[7] D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using AOA,” in Proceeding
of the 22nd Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pp.2037-2040, Salt Lake City, UT, April 2003.
[8] D. K. Goldenberg, J. Lin, A. S. Morse, B. E. Rosen, and Y. R. Yang, “Towards Mobility
as a Network Control Primitive,” in Proceedings of the 5th ACM international symposium
on Mobile ad hoc networking and computing (MobiHoc ), pp.163-174, Roppongi
Hills, Tokyo Japan, May 2004
[9] E. Gonzalez, M. Alarcon, P. Aristizabal, and C. Parra, “BSA: A Coverage Algorithm,”
in Proceedings of International Conference on Intelligent Robots and Systems (IROS),
pp.1679-1684, Las Vegas, Nevada, October 2003.
[10] H. Yang and B. Sikdar, “A Protocol for Tracking Mobile Targets using Sensor Networks,”
in Proceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications (SNPA 2003), pp.71-81, Alaska, USA, May 2003.
[11] H. Choset, “Coverage of Known Spaces: The Boustrophedon Cellular Decomposition,”
Journal of Autonomous Robots, Vol. 9, No. 3, pp.247-253, 2000.
[12] J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe, “Experimental Results for and Theoretical
Analysis of a Self-Organizing Global Coordinate System for Ad Hoc Sensor Networks,” Journal of Telecommunications Systems, Vol. 26, No. 2-4, pp.213-233, June
2004.
[13] J. Culpepper, L. Dung, and M. Moh, “Hybrid Indirect Transmissions (HIT) for Data
Gathering in Wireless Micro Sensor Networks with Biomedical Applications,” in Proceedings
of IEEE 18th Annual Workshop on Computer Communications, pp.124-133,
California, USA, October 2003.
[14] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller, “Mobile-Assisted Localization
in Wireless Sensor Networks,” in Proceeding of the 24th Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM), Miami, FL,
March 2005.
[15] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme, “Autonomous
Deployment and Repair of a Sensor Network Using an Unmanned Aerial Vehicle,” in
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pp.3602-3609, New Orleans, LA, USA, April 2004.
[16] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-based User Location
and Tracking System,” in Proceedings of 19th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), vol. 2, pp.775-784, Tel Aviv,
Israel, March 2000.
[17] P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the Really Hard Problems
Are,” in Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
pp.331-337, San Mateo, CA, 1991.
[18] R. Mi and A. Chandrakasan, “Energy-Efficient Communication for Ad-Hoc Wireless
Sensor Networks,” in Conference Record of the 35th Asilomar Conference on Signals,
Systems and Computers. Volume 1. pp.139-143, Pacific Grove, CA, November 2001.
[19] S. Jain, R. C. Shah,W. Brunette, G. Borriello, and S. Roy, “Exploiting Mobility for Energy
Efficient Data Collection in Wireless Sensor Networks,” in Proceedings of IEEE
Workshop on Modeling and Optimization in Mobile Ad hoc and Wireless Networks
(WiOpt), March 2004.
[20] T. He, B. Krogh, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, L. Gu, and J. Hui, “Energy-Efficient Surveillance System Using Wireless Sensor
Networks,” in Proceedings of the 2nd International Conference on Mobile Systems,
Applications, and Services, pp.270-283, Boston, MA, USA, 2004.
[21] W. Zhao, M. Ammar, and E. Zegura, “A Message Ferrying Approach for Data Delivery
in Sparse Mobile Ad Hoc Networks,” in Proceedings of the 5th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp.187-198, Roppongi Hills,
Tokyo, Japan, 2004.
[22] X. Ji and H. Zha, “Robust Sensor Localization Algorithm in Wireless Ad-hoc Sensor
Networks,” in Proceedings of the 12th International Conference on Computer Communications
and Networks (ICCCN), pp.527-532, October 2003.