| 研究生: |
林君蔚 Chun-Wei Lin |
|---|---|
| 論文名稱: |
三維波流與離岸風機互制行為之模擬分析 Numerical Analysis on 3D Wave-current Interaction with Offshore Wind Turbine |
| 指導教授: |
吳祚任
Tso-Ren Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 離岸風機 、數值模擬 、波浪頻譜 、內造波機 、結構受力 |
| 外文關鍵詞: | offshore wind turbine, numerical, JONSWAP, internal wave maker, dynamic loads |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離岸風電場比陸域風電場更具優勢與潛能,但海上環境條件如颱風、波浪及海流等影響亦比陸域環境嚴苛。台灣海峽平均觀測風速高於國外已開發之離岸風電場,具有良好發展潛力,但台灣位於地震帶且多颱風侵襲,風險亦較其他離岸風電場高。為確保國內離岸風機的運轉安全及可靠性,分析與評估風機支撐結構是否得以承受場址特定環境條件(Site Specific Conditions)包括極端風況、海況及地震等衝擊,勢必成為未來離岸風電場建置前之重要工作項目。
本研究透過Splash3D模式進行三維數值模擬與分析,求解離岸風機在已知極端事件下受波浪及海流衝擊之承載力。Splash3D模式以美國國家實驗室(Los Alamos National Laboratory, LANL)所發展之Truchas模式為基礎進行研究與相關功能開發,模式可同時求解複雜且破碎之自由液面與結構物受力之動態過程,其以部份網格法(Partial-cell Treatment)於計算域中建構風機基礎,並用不規則網格包覆結構、配置數值壓力計以求結構物整體受力分佈;以投影法(Projection Method)求解大渦模擬(Large Eddy Simulation)方程式;以流體體積法(Volume of Fluid, VOF),描述表面碎波行為。
模式中為能夠適切模擬季風以至於颱風之波浪特性,以頻散關係式為基礎設計之內造波機模組(Internal Wave Maker Module)可依據自氣象局取得的單一波浪波譜觀測資料生成JONSWAP理論頻譜,並以此做為輸入條件產生更符合實際海況的亂數波浪。研究中考量波浪與海流之加總效應,比較相同示性波高條件下,規則波與不規則波衝擊結構時其受力分布,以期提供未來離岸風電場建置之參考。
In this research, the three-dimensional numerical simulation and analysis for solving the dynamic loads from waves and currents on the offshore wind turbines is performed. Scenarios focused on the extreme weather conditions. During the typhoon event, the wind-driven storm waves and currents have to be considered while solving the dynamic load on the structures. The Splash3D model was adopted to perform the simulation of the interaction between breaking waves and structures. The core of the Splash3D model is the Truchas model which was developed by Los Alamos National Laboratory (LANL) and featured as high accuracy. Splash3D is capable of solving the dynamic process for the interaction between the structure and fluids with complex breaking free-surface. In order to adequately simulate the waves under monsoon or typhoon, a new wave generation module based on the dispersion relationship is developed. This wave-maker module was used to generate regular waves, irregular waves, and breaking waves under the extreme weather condition. The module was used to simulate the synthetic effect under the effects of waves and currents for obtaining the force distribution on the foundation of the offshore wind turbine.
[1] Morison, J. R., Johnson, J. W., & Schaaf, S. A. (1950). The force exerted by surface waves on piles. Journal of Petroleum Technology, 2(05), 149-154.
[2] Wienke, J. and Oumeraci, H., (2005). Breaking Wave Impact Force on a Vertical and Inclined Slender Pile - Theoretical and Large-Scale Model Investigations. Coastal Engineering, 52:435 462
[3] Aune, L. (2011). Forces from plunging breaking waves on a truss structure (Doctoral dissertation, Master thesis submitted June 2011, Norwegian University of Science and Technology, Department of Civil and Transport Engineering, Trondheim, Norway).
[4] Aashamar, M. (2012). Wave slamming forces on truss support structures for wind turbines. Master thesis, submitted June 12, 2012, Norwegian University of Science and Technology, Department of Civil and Transport Engineering, Trondheim, Norway.
[5] Goda, Y., Haranaka, S. and Kitahata, M. (1966). Study of impulsive breaking wave forces on piles. Report of Port and Harbor Research Institute, Japan, Vol. 5. No. 6, pp. 1 – 30 (in Japanese). Concept also in English language in: Watanabe, A. and Horikawa, K. (1974). Breaking wave forces on large diameter cell. Proc. of 14th International Conference on Coastal Engineering, Ch. 102, pp. 1741 – 1760.
[6] Navaratnam, C. U., Tørum, A., & Arntsen, Ø. A. (2013). Preliminary analysis of wave slamming force response data from tests on a truss structure in large wave flume, Hannover, Germany. Department of Civil and Transport Engineering, NTNU, Trondheim, Norway.
[7] Arntsen, Ø. A., & Gudmestad, O. T. (2014). Wave slamming forces on truss structures in shallow water. In Proceedings of the HYDRALAB IV Joint User Meeting, Lisbon.
http://www.hydralab.eu/flashdrive/documents/TA-FZK-05.pdf
[8] Christensen, E. D., Bredmose, H., & Hansen, E. A. (2005). Extreme wave forces and wave run-up on offshore wind turbine foundations. Proceedings of Copenhagen Offshore Wind, 1-10.U.S. Army, 1984. Shore Protection Manual, Vol. 1. Coastal Engineering Research Center.
[9] Bredmose, H., & Jacobsen, N. G. (2010). Breaking wave impacts on offshore wind turbine foundations: focused wave groups and CFD. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering (pp. 397-404). American Society of Mechanical Engineers.
[10] Marino, E., Borri, C., & Peil, U. (2011). A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 483-490.
[11] Rausa, I. E., Muskulus, M., Arntsen, Ø. A., & Wåsjø, K. (2015). Characterization of wave slamming forces for a truss structure within the framework of the WaveSlam project. Energy Procedia, 80, 276-283.
[12] Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. PhD dissertation, Cornell University
[13] Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144.
[14] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
[15] Kothe, D. B., Rider W. J., Mosso, S. J., Brock, J. S., and Hochstein, J. I. (1996). Volume tracking of interfaces having surface tension in two and three dimensions. Technical Report, AIAA 96-0859.
[16] Rider, W. J. and Kothe, D. B. (1998). Reconstructing Volume Tracking. J. Comp.Phys., 141, 112-152.
[17] Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(02), 453-480.
[18] Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in geophysics, 18, 237-248.
[19] Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. the basic experiment*. Monthly weather review, 91(3), 99-164.
[20] Lin, P., & Li, C. W. (2003). Wave–current interaction with a vertical square cylinder. Ocean Engineering, 30(7), 855-876.
[21] Cabot, W. & Moin, P. (2000). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turb. Combust. 63, 269-291.
[22] Hu, K. C., Hsiao, S. C., Hwung, H. H., & Wu, T. R. (2012). Three-dimensional numerical modeling of the interaction of dam-break waves and porous media. Advances in Water Resources, 47, 14-30.
[23] Vorpahl, F., Popko, W., & Kaufer, D. (2011). Description of a basic model of the” UpWind reference jacket” for code comparison in the OC4 project under IEA Wind Annex XXX. Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), 4, 1-14.
[24] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., ... & Meerburg, A. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut.
[25] WAFO Group. (2000). A Matlab toolbox for analysis of random waves and loads. Lund University, Lund Institute of Technology, Centre for Mathematic Sciences, Mathematical Statistics.
[26] Lin, P., & Liu, P. L. F. (1999). Internal wave-maker for Navier-Stokes equations models. Journal of waterway, port, coastal, and ocean engineering, 125(4), 207-215.
[27] Sumer, B. M., & Fredsøe, J. (2002). The mechanics of scour in the marine environment. World Scientific.
[28] Herbich, J. B. (1981). Scour around pipelines and other objects. Offshore pipeline design elements.
[29] Herbich, J. B. (1984). Seafloor scour: Design guidelines for ocean-founded structures (Vol. 4). Marcel Dekker Inc.
[30] Whitehouse, R. (1998). Scour at marine structures: A manual for practical applications. Thomas Telford.
[31] Dey, S. (1999). Time-variation of scour in the vicinity of circular piers. Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 136(2), 67-75.
[32] Miller Jr, W., & Sheppard, D. M. (2002). Time rate of local scour at a circular pile. In First International Conference on Scour of Foundations.
[33] Bingham, E. C. (1922). Fluidity and plasticity (Vol. 2). McGraw-Hill Book Compny, Incorporated.
[34] Herschel, W. H., & Bulkley, R. (1926). Konsistenzmessungen von gummi-benzollösungen. Colloid & Polymer Science, 39(4), 291-300.
[35] Bagnold, R. A. (1954, August). Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 225, No. 1160, pp. 49-63). The Royal Society.
[36] Rzadkiewicz, S. A., Mariotti, C., & Heinrich, P. (1997). Numerical simulation of submarine landslides and their hydraulic effects. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123(4), 149-157.
[37] Liu, K. F., & Mei, C. C. (1989). Slow spreading of a sheet of Bingham fluid on an inclined plane. Journal of fluid mechanics, 207, 505-529.
[38] 李宇弘,2011,非連續賓漢流變模式之參數訂定與應用The Parameter Determination and Model Application of Discontinuous Bi-viscous Model,國立中央大學,碩士論文。
[39] Hadush, S., Yashima, A., Uzuoka, R., Moriguchi, S., & Sawada, K. (2001). Liquefaction induced lateral spread analysis using the CIP method. Computers and Geotechnics, 28(8), 549-574.
[40] Chatterjee, S. S., Ghosh, S. N., & Chatterjee, M. (1994). Local scour due to submerged horizontal jet. Journal of Hydraulic Engineering, 120(8), 973-992.