跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張宏昇
Hung-sheng Chang
論文名稱: 疊紋式位移量測技術之開發
Development of Displacement Measurement System by Moiré method
指導教授: 李朱育
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 疊紋Talbot效應位移量測相位解析呂薩加圖
外文關鍵詞: moiré, Talbot effect, displacement measurement, phase analysis, Lissajous pattern
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一套以光偵測器取代CCD攝影機分析疊紋條紋的系統:「疊紋式位移量測系統」。本系統主要可分為兩部分:疊紋量測系統與相位校正系統。疊紋量測系統是基於疊紋效應與光柵自成像效應(Talbot effect)所架設的系統,以擴束雷射光準直入射兩道間隔Talbot距離的光柵,使第一道光柵自成像於第二道光柵上形成疊紋條紋。其中,光柵是以微影蝕刻的方式製作而成,具有分光的效果能夠同時讓兩個光偵測器在不同空間平面上接收疊紋光強度變化訊號,以空間移相法解析相位變化,推算光柵位移量。而校正系統則是以呂薩加圖(Lissajous pattern)的原理為基礎,用以調整光偵測器的位置與訊號修正,使兩訊號互為正交形式,令系統能正確解析相位。根據實驗結果,本系統以週期60微米的光柵搭配11倍的Talbot距離(12.51cm)作為代表,具有0.09微米的解析度與的6度/微米靈敏度,目前量測範圍受限於平台位移行程約90微米,理論上可達公分等級的量測範圍。


    We proposed a new method that used the photodetector to substitute the CCD camera for analyzing the moiré pattern to measure the displacement. The measurement system is divided into two parts, the optical moiré section and phase calibration section. In the optical moiré section, we used the expanded collimated He-Ne laser beam as our light source. Afterwards, the laser beam passed through two linear amplitude gratings, which is placed with a specific distance called Talbot distance. When laser beam passed through the first grating, it will create a self-image on the second grating. Therefore, we can obtain the moiré pattern from the second grating and first grating's image. Furthermore we used the photolithography technique to make the grating split the moiré pattern into two images. The intensity of two moiré images can be detected by photodetector on two different planes. Since the intensity of moiré pattern which change along with the movement of grating. In the phase calibration section is based on Lissajous pattern theory, which is used to adjust the position of two photodetectors and calibrate the bias of signal. Used the phase calibration system to make two signals to be orthogonal, then the phase change of moiré pattern can be analyzed, and the displacement of grating can be determined. The experimental results showed that the measurement range of our system can achieve 90um. Considering the high-frequency noise, the measurement resolution of the system is about 0.09um.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 疊紋效應文獻回顧 2 1-2-2 疊紋相位解析文獻回顧 5 1-3研究目的 9 1-4論文架構 10 第二章 基礎理論 11 2-1 光柵自成像效應(Talbot effect) 11 2-2 疊紋效應 13 2-2-1 疊紋基本原理 13 2-2-2 疊紋位移理論 18 2-2-3 疊紋縮放理論 20 2-3 疊紋條紋相位解析 20 2-3-1 空間移相法 20 2-3-2 相位解纏繞 22 2-4 小結 23 第三章 系統架構 24 3-1 元件儀器介紹 24 3-2 疊紋式位移量測系統實驗架構 26 3-3 鍍金光柵參數選用與製作 28 3-3-1 鍍金光柵週期與材料選用 28 3-3-2 鍍金光柵製作流程 29 3-4 訊號修正與相位校正 31 3-4-1 修正訊號直流項與交流項 31 3-4-2 相位校正 35 3-5 小結 36 第四章 實驗結果與討論 37 4-1 系統架構校正 37 4-1-1 訊號修正 37 4-1-2 相位校正 39 4-2 位移量測實驗 39 4-2-1 等速度運動:三角波實驗 39 4-2-2 加速度運動:弦波實驗 45 4-2-3 步階運動 51 4-3實驗討論 58 4-3-1 訊號濾波與實驗差量 58 4-3-2 量測解析度 60 4-3-3 靈敏度 63 4-4 小結 64 第五章 誤差分析 65 5-1 系統誤差 65 5-1-1 非線性誤差:訊號直流項 66 5-1-2 非線性誤差:訊號振幅項 67 5-1-3 光柵誤差 68 5-1-4 餘弦誤差 69 5-2 隨機誤差 70 5-2-1 環境振動 70 5-2-2 材料熱膨脹 71 5-2-3 電子雜訊 72 5-3 小結 72 第六章 結論與未來展望 73 6-1 結論 73 6-2 未來展望 73 參考文獻 74

    [1]. S. Hosoe, “Laser interferometric system for displacement measurement with high precision,” Nanotechnology, 2, 88-95 (1991).
    [2]. Y. Jourlin, et al., “Compact diffractive interferometric displacement sensor in reflection,” Precision Engineering, 22 ,1-6 (2002).
    [3]. O. G. Helleso, et al., “Interferometric displacement sensor made by integrated optics on glass,” Sensor and Actuators, 47, 479-481 (1995).
    [4]. T. Kubota, et al., “Interferometric for measuring displacement and distance,” Optics Letters, 12, 310-312 (1987)
    [5]. S. T. Lin, K. T. Lin, and W. J. Syu, “Angular interferometer using calcite prism and rotating analyzer,” Optics Communications. 277(2), 251–255 (2007).
    [6]. P. J. Caber, “Interferometric profiler for rough surfaces,” Applied Optics, 32, 3438-3441 (1993).
    [7]. O. Sasaki, and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Applied Optics, 25, 3137-3140 (1986).
    [8]. M. H. Chiu, J. Y. Lee, and D. C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” Applied Optics, 36, 2936-2939 (1997).
    [9]. H.F. Talbot, “Facts relating to optical science,” Philosophical Magazine Series 3, 9(56), 401-407 (1836).
    [10]. S. Wu, et al., “Wafer surface measurements using shadow Moiré with Talbot effect,” ASME 6, 369-376 (1997).
    [11]. Lord Rayleigh, “On the manufacture and theory of diffraction-gratings,” Philosophical Magazine, 47(310), 81-93 (1874).
    [12]. Y. Nakano, “Automatic measurements of the small angle variation using a holographic moiré interferometry and a computer processing,” Proceedings of SPIE, 673, 180-183 (1986).
    [13]. K. S. Yen, M. M. Ratnam, “Comparison of in-plane displacement measurement from circular grating moire fringes using Fourier transformation and graphical analysis,” Optics and Lasers in Engineering, 50,687-702 (2012).
    [14]. S. Kishimoto, X. Huimin, N. Shinya, “Electron moiré method and its application to micro-deformation measurement,” Optics and Lasers in Engineering, 34, 1-14 (2000).
    [15]. C. M. Liu, L. W. Chen, “Using the digital phase-shifting projection moiré method and wavelet transformation to measure the deformation of a PMMA cantilever beam,” Polymer Testing, 24, 576-582 (2005).
    [16]. 賴律臻,「差動式疊紋自動頓交技術」,國立中央大學,碩士論文,民國100年。
    [17]. 林佑儒,「疊紋自動對焦技術」,國立中央大學,碩士論文,2010。
    [18]. N. S. Liou “Specimen gratings made from body art paper for in-plane moire strain analysis,” Polymer Testing, 24, 535-539 (2005).
    [19]. N. S. Liou, C. Y. Huang, “Fourier transform moire strain analysis by using cross gratings produced from iron-on paper and inkjet printer,” Polymer Testing, 22, 487-490 (2003).
    [20]. K. Creath and J. C. Wyant, Optical Shop Testing (John Wiley & Sons.Inc, 1992), Chap. 16.
    [21]. R. Weller and B. M. Shepard, “Displacement measurements by mechanical interferometry,” Proc. SESA 6, 35-38 (1948)
    [22]. F. P. Chiang and C. C. Kin, “Some optical techniques of displacement and strain measurements on metal surfaces,” Journal of Metals, 35, 49-53 (1983).
    [23]. J. Mu, et al., “Error analysis of phase shifting by varying the incident angle of parallel beams in shadow Moiré,” Optik, 124,6769-6771 (2013).
    [24]. 張家壽,「應用數位投影疊紋法於微小尺寸表面之量測」,國立台灣大學,碩士論文,2000。
    [25]. 潘同宣,「疊紋自動準直儀系統」,國立中央大學,碩士論文,民國102年。
    [26]. B. Wang, “Moire deflectometry based on Fourier-transform analysis,” Measurement, 25, 249-253 (1999).
    [27]. M. Wang, “Subfringe integration method for automatic analysis of moire deflection tomography,” Optical Engineering, 39(10), 27262733 (2000).
    [28]. W. R. J. Funnell, “Image processing applied to the interactive analysis of interferometric fringes,” Applied Optics, 20, 3245-3250 (1981).
    [29]. R. S. Chang, et al., “Analysis of CCD moiré pattern for micro-range measurements using the wavelet transform,” Optics and Lasers Technology, 35(1), 43-47 (2003).
    [30]. Skullsinthestars, “Rolling out the (optical) carpet: the Talbot effect,” http://skullsinthestars.com/2010/03/04/rolling-out-the-optical-carpet-the-talbot-effect.
    [31]. E. Hhecht, Optics, 4th ed. (Addison Wesley, 2002) Chap. 8.
    [32]. 李正中,薄膜光學與鍍膜技術,(藝軒圖書出版社,2006)
    [33]. B. Neumann, U. Müller, “Fabry-Perot interferometer with a quarter-wave retarder and an intermediate optical exit for displacement-measurements,” Optil, 112(2),81-85 (2001).

    QR CODE
    :::