| 研究生: |
凃勝勛 Sheng-Xun Tu |
|---|---|
| 論文名稱: |
石墨烯與奈米顆粒複合熱介面材料 應用於高功率IGBT元件熱管理 Graphite nanoplatelet-based and nanoparticle composites as thermal interface materials and application to the thermal management of high power IGBT devices |
| 指導教授: |
傅尹坤
Yiin-Kuen Fuh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 電力轉換器 、IGBT 、熱界面材料 、疲勞破壞 |
| 外文關鍵詞: | Converter, IGBT, Thermal interface material, Fatigue damage |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討雙向IGBT Converter系統與自主式微電網連結,其熱管理是非常重要的,因為高電壓或高電流將間接地或連續地產生高溫使其使用壽命減短,甚至破壞整體系統運作,特別是使用高功率元件絕緣柵雙極晶體管(insulated gate bipolar transistor, IGBT)。熱界面材料(Thermal interface materials, TIM) 對於高功率元件散熱有很大的改善與幫助,在本論文中所使用TIM是將兩種高散熱的TIM納米石墨片(graphite nanoplatelets, GNPs)與納米顆粒(nanoparticles, NPs)進行疊加試驗,疊加方式是通過網印製程以確保NPs均勻的印在GNPs上,利用疊加的TIM使得熱界面材料的有效熱傳遞以及良好的散熱性能應用在Converter系統中IGBT實驗中並加以探討。
本論文以Converter系統中IGBT為對象利用一個以模擬技術(finite difference or finite element method)的方法,並透過模擬軟體COMSOL進行模擬,且實際進行實驗對高功率元件之結構進行熱管理分析,包含熱源、起始與邊界條件、各種散熱情境對元件溫度分布與最終性能之影響。並將以IGBT模塊的內部結構和材料特性為基礎,探討熱循環與熱應力使導致焊料層疲勞、鋁接線斷裂或剝離、(Direct bonded copper ,DBC)直接覆銅基板失效等故障產生。
In this study, the thermal management of the Converter system is of great importance since very high voltage/current will be switched intermittently and/or continuously and high temperature is detrimental to the service life of electronics, especially for the switching devices such as insulated gate bipolar transistor (IGBT). Thermal interface materials (TIMs) are generally composed of highly conductive particle fillers such as high thermal conductivity of graphite and a matrix such that efficient heat transfer and good compliance of the interface material can be achieved during application. In this paper, two types of TIMs are tested based on the hybridization of graphite nanoplatelets (GNPs) and the nanoparticles (NPs). The hybrid materials are fabricated via screen printing process to ensure the conformal uniformity of NPs spreading on the GNPs.
In particular, existing Institute of nuclear energy research Converter is the key component and core components is the high-power IGBT. We carry out mechanical simulations using a finite element method (FEM) simulator (COMSOL) for a simplified 3D power assembly to calculate the different temperatures fields due to natural and forced convection conditions. In addition to collecting the relevant literature relevant to IGBT failure modes and Direct bonded copper (DBC) failure.
[1] 鄭振東編譯,「換流器驅動技術」,建興出版社,民國八十年
[2] D.D.L. Chung, Thermal Interface Materials, J. Mater. Perform. 10 (2001) 56–59.
[3] R. Skuriat, J. F. Li, P. A. Agyakwa, N. Mattey, P. Evans and C. M. Johnson, Degradation of Thermal Interface Materials for High-Temperature Power Electronics Applications, Microelectron. Reliab. 53 (2013) 1933–1942.
[4] B. Smith, T. Brunschwiler and B. Michel, Comparison of Transient and Static Test Methods for Chip-to-Sink Thermal Interface Characterization, Microelectron. J. 40 (2008) 1379-1386.
[5] R. Kempers, P. Kolodner, A. Lyon and A. J. Robinson, A High-Precision Apparatus for The Characterization of Thermal Interface Materials, Rev Sci Instrum. 80 (2009) 095111-1-095111-11.
[6] R. Mahajan, C. P. Chiu and G. Chrysler, Cooling a Microprocessor Chip, Proc IEEE 94 (2006) 1476-1486.
[7] B. Czerny, M. Lederer, B. Nagl, A. Trnka, G. Khatibi and M. Thoben, Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions, Microelectron. Reliab. 52 (2012) 2353-2357.
[8] M. Bouarroudj, Z. Khatir, J.P. Ousten, F. Badel, L. Dupont, S. Lefebvre, Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions, Microelectron. Reliab. 47 (2007) 1719-1724.
[9] O. Schilling, M. Schäfer, K. Mainka, M. Thoben, F. Sauerland, Power cycling testing and FE modelling focussed on Al wire bond fatigue in high power IGBT modules, Microelectron. Reliab. 52 (2012) 2347-2352.
[10] A. Benmansour, S. Azzopardi, J. C. Martin, E. Woirgard, Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions, Microelectron. Reliab. 47 (2007) 1730-1734.
[11] H. Lu, C. Bailey and C. Yin, Design for reliability of power electronics modules, Microelectron. Reliab. 49 (2009) 1250–1255.
[12] T. Lhommeau, X. Perpin, C. Martin, R. Meuret, M. Mermet-Guyennet and M. Karama, Thermal fatigue effects on the temperature distribution inside IGBT modules for zone engine aeronautical applications, Microelectron. Reliab. 47 (2007) 1779-1783.
[13] X. Perpina, J.F. Serviere, X. Jorda, A. Fauquet, S. Hidalgo, J. Urresti-Ibanez, J. Rebollo and M. Mermet-Guyennet, IGBT module failure analysis in railway applications, Microelectron. Reliab. 48 (2008) 1427-1431.
[14] X. Perpina, A. Castellazzi, M. Piton, M. Mermet-Guyennet and J. Millan, Failure-relevant abnormal events in power Converters considering measured IGBT module temperature inhomogeneities, Microelectron. Reliab. 47 (2007) 1784-1789.
[15] Y. P. Zhang, X. L. Yu, Q. K. Feng and R. T. Zhang, Thermal performance study of integrated cold plate with power module, Appl. Therm. Eng. 29 (2009) 3568-3573.
[16] Y. J. Lee, P. S. Lee and S. K. Chou, Hotspot mitigating with obliquely finned microchannel heat sink - an experimental study, IEEE Trans. Compon. Packag. Technol. 3 (2013) 1332-1341.
[17] C. K. Liu, S. J. Yang, Y. L. Chao, K. Y. Liou and C. C. Wang, Effect of non-uniform heating on the performance of the microchannel heat sinks, Int. Commun. Heat Mass 43 (2013) 57-62.
[18] MITSUBISHI ELECTRIC, IGBT Modules Application Note, Mar, 2014
[19] P. K. Schelling, L. Shi and K. E. Goodson, Managing Heat for Electronics, Mater Today 8 (2005) 30–35.
[20] Y. S. Xu and D. D. L. Chung, Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatments, Compos Interfaces 7 (2000) 243–256.
[21] X. Sun, A. Yu, P. Ramesh, E. Bekyarova, M. E. Itkis and R. C. Haddon, Oxidized Graphite Nanoplatelets as an Improved Filler for Thermally Conducting Epoxy-Matrix Composites, J Electron Packaging 133 (2011) 020905.
[22] J. L. Xiang and L. T. Drzal, Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper, Carbon 49 (2011) 773–778.
[23] COMSOL Multiphysics® Modeling Software,皮托科技股分有限公司熱傳模組範例.
[24] 張添昌,盧弘翊, 發展能源電子轉換器三維熱流模型建模技術服務結案報
[25] 李龍育,ANSYS Multiphysics FLUENT,虎門科技股份有限公司,July,11,2013.