| 研究生: |
武良文 Lian-Wen Wu |
|---|---|
| 論文名稱: |
砷化鎵金屬半導體場效電晶體中p型埋藏層之效應 Effects of Buried p-Layer for GaAs MESFET’s |
| 指導教授: |
紀國鐘
Gou-Chung Chi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
果作㆒些介紹與探討。製造MESFET 的傳統製程是利用非自我準直
(non-self aligned)技術,將矽離子佈植到㆒半絕緣(semi-insulating)的
砷化鎵基板㆗,而形成n 型導電層。但由於離子通道效應的影響使
得植入離子的分佈變寬,造成製造出來的元件特性較差。為了克服
此缺點可共同佈植㆒p 型埋層(buried p-layer)來抑制其漏電流(leakage
current) 、降低起始電壓(threshold voltage) 和提高互導值
(transconductance)。所以我們就利用共同佈植(co-implantation)的製程
將矽離子及鎂(Mg)離子或鈹離子(Be)植入至半絕緣的砷化鎵基板
㆗,再以快速高溫熱退火(rapid-thermal annealing)處理,來修復被破
壞的晶格及活化植入的載子。為了瞭解矽離子佈植到半絕緣的砷化
鎵基板,和在共同佈植p 型埋藏層,經不同活化溫度的快速高溫熱
退火處理後載子活化情況。可由霍爾量測(Hall measurement)來測量
樣品活化的載子濃度,藉以得到最佳的活化條件。
由傳輸線模型(Transmission Line Model ,TLM)量測得知,只
有n 型通道層的元件所量得的特徵接觸電阻值最小,為4.8 × 10-7Ω
-cm2。以鈹離子形成p 型埋藏層的元件當閘-源極電壓(VGS)為-2.5V,
整個電晶體已達到夾止狀態, 且在VGS=0V 時有最大互導值
115mS/mm,並有極佳的線性度。在元件的高頻特性量測㆖,以鈹離
子形成p 型埋藏層之元件,電流增益截止頻率( ft ) 為10GHz 及以外
插法求得的功率增益截止頻率( fmax ) 約為39GHz 。兩者皆較以鎂離
子形成p 型埋藏層之元件來的大。
為了改善以鎂離子形成p 型埋藏層的元件無法夾止的問題。我
們將鎂離子的佈值劑量由原先的6× 1011cm-2 提高至2× 1012cm-2,先
由霍爾量測觀察載子濃度的變化,並利用LSS 模擬與電化學-電容電
壓量測,探討晶片㆗載子的分佈情形,以及元件製作之後的特性。
隨著鎂佈植劑量的增加,所量測到的活化載子濃度越來越小。
在最佳活化溫度為850℃,載子濃度已由原先的5.6× 1017減少為3.5×
1017cm-3;數據顯示,當鎂佈植劑量提高,相對的對通道內n型載子
的補償現象愈明顯,而使得通道內n型載子濃度變低。
元件製作完成後發現,當鎂離子的佈植劑量提高至2× 1012cm-2
時,元件無法夾止的問題已獲解決,且在閘極偏壓為零附近有最大
互導值(gm)130mS/mm及最大飽和電流(IDSS)200mA/mm。但由於隨著
p-型摻質數目的增加,對n-型通道載子濃度的降低愈明顯,其接觸
電阻已變差為1× 10-4Ω-cm2。
[1] C. A. Mead, “ Schottky Barrier Gate Field Effect Transistor”,
Proc. IEEE, 54, pp.307-308, 1966.
[2] A. Higashisaka, Y. Takayama and F. Hasegawa, “A high power GaAs
MESFET with an experimentally optimized pattern”, IEEE Trans.
ED, Vol. ED-27, pp.1025-1029, 1980.
[3] Badih El-Kareh, “Fundamentals of Semiconductor Processing
Technologies”, Ch. 6 Ion-Implantation, p. 353.
[4] S, M, Sze, “VLSI Technology”, Ch. 7 Ion-Implantation, p. 327.
[5] J. Lindhard, M. Scharff, H. Schiott, “Rang Concepts And Heavy Ion
Ranges”, Mat. Fys. Med. Dan. Vid Selsk, Vol. 33, No. 14, 1963, p. 1.
[6] S, M, Sze, “Semiconductor Devices Physics and Technology”, Chap.
10, John Wiley &Sons, 1985.
[7] M. A. Shahid, M. Anjum, B. J. Sealy, “Annealing of Ion-Implanted
Ga0.47In0.53As”, Radiation Effects Letters, Vol. 86, 1984, p. 87.
[8] Mulpuri V. Rao, “Rapid isothermal annealing of high- and lowenergy
ion-implanted InP and In0.53Ga0.47As”, IEEE Trans. Electron.
Device Lett., Vol. 39, No. 1, 1992, p. 160.
[9] R. A. Moline, J. Applied Physics, vol. 42, pp.3553, 1973.
[10] S. R. Wilson, Solid State Technology, June 1985, p.185.
[11] N. Braslau, “Alloyed Ohmic Contact to GaAs”, Journal of Vacuum
Science & Technology B, Vol. 19, No. 3, 1981.
[12] M. Heiblum, M. I. Nathan, and C. A. Chang, “Characteristics of
AuGeNi Ohmic Contact to GaAs”, Solid State Electronics, Vol. 11,
No.6, p.2505, 1993.
63
[13] K. Yamazaki, N. Kato, and M. Hirayama, “Below 10ps/Gate
Operation with Buried P-Layer SAINT FET’s”, Electronics Letters,
Vol. 20, Nos. 25/26, p.1029, 1984.
[14] K. Yamazaki, N. Kato, and M. Hirayama, "Buried P-Layer for Very
High Speed GaAs LSI''s with Submicrometer Gate Length", IEEE
Transactions on Electron Device, Vol. ED-32, No. 11, p.2430, 1985.
[15] K. L. Tan, H. K. Chung, and C. H. Chen, “Improvement in
Threshold Implanted P Layer”, IEEE Electron Device Letters, Vol.
EDL-8, No. 9, p.440, 1987.
[16] Y. Umemoto, S. Takahashi, N. Matsunaga, and M. Nakamura,
“GaAs MESFETs with A Buried P-Layer for Large Scale
Integration”, Electronics Letters, Vol. 20, No. 2, p.98, 1984.
[17] S. J. Lee and C. R. Crowell, “Parasitic source and drain resistance in
high-electron-mobility transistor”, Solid-state Electron, Vol. 28,
p.659-668, 1985.
[18] Dieter K. Schroder, Semiconductor Material and Device
Characterization, Wiley-Interscience, 1990.
[19] H. Craig Casey, JR., “Devices For Integrated Circuits Silcon And Ⅲ
-Ⅴ Compound Semiconductors”, John Wiley & Sons, INC., 1999.
[20] G. Gonzalez, “Microwave Transistor Amplifier Analysis and
Design”, Prentice-hell, 1984.
[21] K. tabatabaie-Alavi, A. N. M. M. Choudhury, N. J. Slater, and
C.G.Fonstad , “Ion implantation of Be in In0.53Ga0.47As”, Appl. Phys.
lett, March, 1982.
[22] G. C. Chi, “An e-beam evaporated borosilicate glass thin film as an
encapsulant for annealing Be-implant InP”, Materials Chemistry and
Physics 39 (1994) 69-71.
[23] M. B. Dutt, Ram Nath, Rajendra Kumar, M. N. Sen and Vikram
Kumar, “Co-Implantation Of Si And Be In SI GaAs For Improved
64
Device Performance”, Solid-State Electronics Vol. 42, No. 11,
pp.1905-1910, 1998.
[24] C. C. Lee, L. W. Wu, G. C. Chi, “Activation analysis of rapid
thermally annealed Si and Mg co-implanted semi-insulating GaAs”,
Nuclear Instruments and Methods in Physics Research B. No.16022,
30 November. 2000.