跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊緣智
Yuan-Chih Yang
論文名稱: 藉由權重之梯度大小調整DropConnect的捨棄機率來訓練神經網路
Training a neural network by adjusting the drop probability in DropConnect based on the magnitude of the gradient
指導教授: 陳弘軒
Hung-Hsuan Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 過度擬合、正則化、Dropout、DropConnect、泛化
外文關鍵詞: Overfitting, Regularization, Dropout, DropConnect, Generalization
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在深度學習訓練中,Dropout 和 DropConnect 是常被用來解決過度
    擬合的正則化技術,Dropout 和 DropConnect 藉由在訓練過程中以一個
    固定機率隨機地捨棄神經元及該神經元前後的連結,使得每個神經元彼
    此之間不會過度依賴其他神經元,進而提高模型泛化的能力。
    本文提出了一種新模型 Gradient DropConnect,它利用每個權重和
    偏差的梯度以確定它們在訓練期間的下降捨棄機率。我們進行了一連串
    的實驗以驗證這種方法可以有效地緩解過度擬合。


    Dropout and DropConnect are regularization techniques often used to address the overfitting issue in deep learning. Dropout and DropConnect randomly discard neurons or links with a fixed probability during training
    so that each neuron does not depend too much on other neurons, thereby improving the model’s generalization ability.
    This paper proposes a new model, Gradient DropConnect, which leverages the gradient of each weight and bias to determine their dropping probabilities during training. We conducted thorough experiments to validate that such an approach can effectively mitigate overfitting.

    目錄 頁次 摘要 iv Abstract v 致謝 vi 目錄 viii 圖目錄 xi 表目錄 xii 一、 緒論 1 1.1 研究動機 .................................................................. 1 1.2 研究目標 .................................................................. 2 1.3 研究貢獻 .................................................................. 2 1.4 論文架構 .................................................................. 3 二、 相關研究 4 2.1 Dropout ................................................................... 4 2.2 Adaptive dropout for training deep neural networks............ 6 2.3 DropConnect ............................................................. 7 2.4 Inverted Dropout ........................................................ 7 三、 模型及方法 9 3.1 模型架構 .................................................................. 9 viii 目錄 3.2 DropConnect 與 Mask 遮罩矩陣 .................................... 10 3.3 Gradient DropConnect ................................................. 12 3.4 模型虛擬碼 (PseudoCode) ............................................ 18 四、 實驗結果 21 4.1 實驗參數細節 ............................................................ 21 4.2 訓練用資料集 ............................................................ 21 4.2.1 隨機生成的線性回歸資料集 ................................. 21 4.2.2 MNIST............................................................ 22 4.2.3 CIFAR10 ......................................................... 22 4.2.4 CIFAR100........................................................ 22 4.2.5 NORB............................................................. 22 4.3 實驗一: 觀察 Gradient DropConnect 的特性..................... 23 4.4 實驗二: 比較 Gradient DropConnect 和其他正則化方法的 效能 ............................................................................... 25 4.4.1 MNIST Dataset 的結果....................................... 27 4.4.2 CIFAR10 Dataset 的結果 .................................... 29 4.4.3 CIFAR100 Dataset 的結果 ................................... 36 4.4.4 NORB Dataset 的結果........................................ 38 4.5 實驗三: 探討 Gradient DropConnect 和一般 DropConnect 在不同捨棄機率下的效能 .................................................... 42 4.6 實驗四: DropConnect、Dropout 和 Gradient DropConnect 訓練完的參數分布比較 ....................................................... 44 五、 總結 48 5.1 結論 ........................................................................ 48 5.2 未來展望 .................................................................. 48 參考文獻 51 ix 目錄 附錄 A 補充模型架構 53 A.1 AlexNet.................................................................... 53 A.2 VGG........................................................................ 54 A.3 實驗及模型程式碼 ...................................................... 55

    參考文獻
    [1] “Sppmg/TW_thesis_template,” GitHub. (), [Online]. Available: https://github.
    com/sppmg/TW_Thesis_Template (visited on 10/23/2016).
    [2] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information and computer sc
    vol. 44, no. 1, pp. 1–12, 2004.
    [3] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks
    architectures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.
    [4] O. Bousquet and A. Elisseeff, “Stability and generalization,” The Journal of Machine Learning
    vol. 2, pp. 499–526, 2002.
    [5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
    nov, “Improving neural networks by preventing co-adaptation of feature detectors,”
    arXiv preprint arXiv:1207.0580, 2012.
    [6] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neu-
    ral networks using dropconnect,” in International conference on machine learning,
    PMLR, 2013, pp. 1058–1066.
    [7] J. V. Uspensky, “Introduction to mathematical probability,” 1937.
    [8] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,” Advances in neural in
    vol. 26, 2013.
    [9] P. Galeone, Analysis of dropout, Jan. 2017. [Online]. Available: https://pgaleone.
    eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/.
    [10] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal bio-
    metric systems,” Pattern recognition, vol. 38, no. 12, pp. 2270–2285, 2005.
    [11] D. G. Altman and J. M. Bland, “Statistics notes: The normal distribution,” Bmj,
    vol. 310, no. 6975, p. 298, 1995.
    [12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
    to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
    1998.
    [13] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
    images,” 2009.
    51
    [14] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object recog-
    nition with invariance to pose and lighting,” in Proceedings of the 2004 IEEE Computer Society
    IEEE, vol. 2, 2004, pp. II–104.
    [15] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade,
    Springer, 2012, pp. 421–436.
    [16] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look at
    signal fidelity measures,” IEEE signal processing magazine, vol. 26, no. 1, pp. 98–
    117, 2009.
    [17] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:171
    2017.
    [18] ——, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv preprint arXiv:1608.03983,
    2016.
    [19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
    convolutional neural networks,” Advances in neural information processing systems,
    vol. 25, 2012.
    [20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
    image recognition,” arXiv preprint arXiv:1409.1556, 2014.
    [21] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthog-
    onal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.
    [22] P. Juszczak, D. Tax, and R. P. Duin, “Feature scaling in support vector data
    description,” in Proc. asci, Citeseer, 2002, pp. 95–102.
    [23] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation.,” Encyclopedia of database systems,
    vol. 5, pp. 532–538, 2009.
    [24] L. Prechelt, “Early stopping-but when?” In Neural Networks: Tricks of the trade,
    Springer, 1998, pp. 55–69.
    [25] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of Computational and
    vol. 10, no. 1, pp. 1–50, 2001.
    [26] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistic
    vol. 58, no. 1, pp. 267–288, 1996.
    52

    QR CODE
    :::