| 研究生: |
陳峙瑋 Chih-Wei Chen |
|---|---|
| 論文名稱: | Reaction Crystallization Kinetics of Dimethyl Fumarate by Anti-Solvent Addition |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 富馬酸二甲酯 、反應動力學 、反溶劑結晶 |
| 外文關鍵詞: | Dimethyl fumarate, Reaction kinetics, Anti-solvent crystallization |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇研究的主要目的在於結合反應與結晶的觀點,對於富馬酸二甲酯的合成與反結晶製程進行討論。首先,關於反應部分,利用富馬酸與甲醇進行酯化反應,並選擇以硫酸作為均相的酸性催化劑進而得到富馬酸二甲酯。然而,即使催化劑的添加能促使反應的進行,但過量的催化劑會導致副反應的產生進而影響產物的純度,因此,本反應過程中的催化劑濃度,參考文獻訂於富馬酸與硫酸的莫耳比等於4。而動力學研究是透過改變起始反應濃度及不同的反應溫度求得反應速率式與速率常數。此外,大多數的化學反應皆為放熱反應,在本研究中,透過理論計算去估計反應焓對於不同放大規模、熱力學系統及冷卻設備的效能需求進行討論。再者,有關結晶部分,比較冷卻結晶與反溶劑添加的結晶方法之差異,其中,反應後直接冷卻結晶的產物顆粒大小相較於透過反溶劑添的結晶方法大。另外,由於酸性催化劑的使用,中和步驟與否亦是重要的課題,我們發現在反溶劑添加的同時,有中和反應的產物之溶解度測試較沒有中和的產物緩慢。因此,我們推論在此系統中,顆粒大小分布並非為決定溶解度測試的關鍵因素,透過單晶X光繞射儀(SXD)的分析結果,結晶平面的官能基可能是造成親疏水性的重要因素。另外,利用MSMPR模型的顆粒平衡計算成核速率和晶體生長速率,透過濕篩法求得晶體尺寸分布。最後,從光學顯微鏡(OM)、示差掃描量熱儀(DSC)、傅立葉轉換紅外線光譜儀(FT-IR)、粉末X射線繞射儀(PXRD)和單晶X光繞射儀的檢測結果分別確認富馬酸二甲酯的晶貌、熔點及結構。
The aim of this thesis was about the kinetic studies for the formation of dimethyl fumarate and the crystallization of dimethyl fumarate by anti-solvent addition. The esterification of fumaric acid with methanol was in the presence of a homogeneous sulfuric acid catalyst. The catalyst concentration used in this reaction was the molar ratio of fumaric acid to sulfuric acid of 4. The reaction rate expressions and the enthalpy of reaction were estimated from experimental data and theoretical calculations. Dimethyl fumarate crystals produced by anti-solvent addition with and without neutralization were compared with the control patent method by cooling. The dimethyl fumarate generated from cooling had the largest crystal sizes and the one prepared from anti-solvent addition had relatively small crystal sizes. However, dimethyl fumarate crystals produced from anti-solvent crystallization with simultaneous neutralization exhibited a different dissolution profile from the one from anti-solvent addition without simultaneous neutralization. In addition, nucleation rate and crystal growth rate were investigated through the MSMPR formalism for the population balance by using wet sieving method for crystal size distribution. Finally, the solid-state characterizations for all sample solids by OM, FT-IR, DSC, PXRD and SXD were carried out for ensuring the chemical identity and polymorphism of dimethyl fumarate.
Chapter 1
1 Olmsted, J. III. Synthesis of aspirin: a general chemistry experiment. J. Chem. Educ. 1998, 75 (10), 1261-1263.
2 Bogdan, A. R., Poe, S. L., Kubis, D. C., Broadwater, S. J., McQuade, D. T. The continuous-flow synthesis of ibuprofen. Angew. Chem. Int. Ed. 2009, 48 (45), 8547-8550.
3 Fischer, R.; Stoger, E.; Schillberg, S.; Christou, P.; Twyman, R. M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 2004, 7 (2), 152-158
4 Vinatoru, M.; Toma, M.; Mason, T. J. Advances in sonochemistry. 1st Ed.; JAI Press Inc., Connecticut, 1999; Vol. 5, pp. 209-248.
5 Dondorp, A.; Nosten, F.; Stepniewska, K.; Day, N.; White, N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005, 366 (9487), 717-25.
6 Hay, C. A.; Anderson, L. A.; Roberts, M. F.; Phillipson, J. D. In vitro cultures of Cinchona species: precursor feeding of C. ledgeriana root organ suspension cultures with L-tryptophan. Plant Cell Rep. 1986, 5 (1), 1-4.
7 Gum, P. A.; Kottke-Marchant, K.; Welsh, P. A.; White, J.; Topol, E. J. A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J. Am. Coll. Cardiol. 2003, 41 (6), 961-965.
8 Covic, A.; Kuhlmann, M. K. Biosimilars: recent developments. Int. Urol. Nephrol. 2007, 39 (1), 261-266.
9 Tung, H.-H. Industrial perspectives of pharmaceutical crystallization. Org. Process Res. Dev. 2013, 17 (3), 445-454.
10 Alvarez, A. J.; Myerson A. S. Continuous plug flow crystallization of pharmaceutical compounds. Cryst. Growth Des. 2010, 10 (5), 2219-2228.
11 Méndez del Río, J. R.; Rousseau, R. W. Batch and tubular-batch crystallization of paracetamol: crystal size distribution and polymorph formation. Cryst. Growth Des. 2006, 6 (6), 1407-1414.
12 Denbigh, K. G. Velocity and yield in continuous reaction systems. Trans. Faraday Soc. 1944, 40, 352-373.
13 Ståhl, M.; Åslund, B. L.; Rasmuson, Å. C. Reaction crystallization kinetics of benzoic acid. AlChE J. 2001, 47 (7), 1544-1560.
14 Kelkar, V. V.; Ng, K. M. Design of reactive crystallization systems incorporating kinetics and mass-transfer effects. AIChE J. 1999, 45 (1), 69-81.
15 Polster, C. S.; Cole,K. P.; Burcham, C.L.; Campbell, B. M.; Frederick, A. L.; Hansen, M. M.; Harding, M.; Heller, M. R.; Miller, M. T.; Phillips, J. L.; Pollock, P. M.; Zaborenko, N. Pilot-scale continuous production of LY2886721: amide formation and reactive crystallization. Org. Process Res. Dev. 2014, 18 (11), 1295-1309.
Chapter 2
1 Guzowski, J.; Kiesman, W.; Irdam, E. Process for preparing high purity and crystalline dimethyl fumarate. US 2014/0200363 A1, Jul. 17, 2014
2 Yadav, G. D.; Thathagar, M. B. Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React. Funct. Polym. 2002, 52 (2), 99-110.
3 Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30 (10), 72-92.
4 Lee, T.; Hsu, F. B. A cross-performance relationship between Carr's index and dissolution rate constant: The study of acetaminophen batches. Drug Dev. Ind. Pharm. 2007, 33 (11), 1273-1284.
Chapter 3
1 Lee, T.; Chang, G. D. Sucrose conformational polymorphism: A jigsaw puzzle with multiple routes to a unique solution. Cryst. Growth Des. 2009, 9 (8), 3551-3561.
2 Lee, T.; Lin, H. Y.; Lee, H. L. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: the study of acetaminophen (paracetamol) by in-process controls. Org. Process Res. Dev. 2013, 17 (9), 1168-1178.
3 Abu Bakar, M. R.; Nagy, Z. K.; Saleemi, A. N.; Rielly, C. D. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes. Cryst. Growth Des. 2009, 9 (3), 1378-1384.
4 Kim, S.-H.; de Mas, N.; Parlanti, L.; Lyngberg, O. K.; Ströhlein, G.; Guo, Z.; Dambalas, K.; Rosso, V. W.; Yang, B.-S.; Girard, K. P.; Manaloto, Z. A.; D’Arasmo, G.; Frigerio, R. E.; Wang, W.; Lu, X.; Bolgar, M. S.; Gokhale, M.; Thakur, A. B. Synthesis, chromatographic purification, and isolation of epothilone-folic acid conjugate BMS-753493. Org. Process Res. Dev. 2011, 15 (4), 797-809.
5 Wu, J. F.; Tai, C. Y.; Yang, W. K.; Leu, L. P. Temperature effects on the crystallization kinetics of size-dependent systems in a continuous mixed-suspension mixed-product removal crystallizer. Ind. Eng. Chem. Res. 1991, 30 (10), 2226-2233.
6 Herrera, M. L.; Segura, J. A.; Rivarola, G. J.; Añón, M. C. Relationship between cooling rate and crystallization behavior of hydrogenated sunflowerseed oil. J. Am. Oil Chem. Soc. 1992, 69 (9), 898-905.
7 Zijlema, T. G.; Geertman, R. M.; Witkamp, G.-J.; van Rosmalen, G. M.; de Graauw, J. Antisolvent crystallization as an alternative to evaporative cystallization for the production of sodium chloride. Ind. Eng. Chem. Res. 2000, 39 (5), 1330-1337.
8 Yu, Z. Q.; Tan, R. B. H.; Chow, P. S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. J. Cryst. Growth 2005, 279 (3-4) 477-488.
9 Zhang, H.; Quon, J.; Alvarez, A. J.; Evans, J.; Myerson, A. S.; Trout, B. II Development of continuous anti-solvent/cooling crystallization process using cascaded mixed suspension, mixed product removal crystallizers. Org. Process Res. Dev. 2012, 16 (5), 915-924.
10 Lindenberg, C.; Krättli, M.; Cornel, J.; Mazzotti, M. Design and optimization of a combined cooling/antisolvent crystallization process. Cryst. Growth Des. 2009, 9 (2), 1124-1136.
11 Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; Spanton, S.; Dziki, W.; Porter, W.; Quick, J.; Bauer, P.; Donaubauer, J.; Narayanan, B. A.; Soldani, M.; Riley, D.; McFarland, K. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev. 2000, 4 (5), 413-417.
12 Ståhl, M.; Åslund, B. L.; Rasmuson, Å. C. Reaction crystallization kinetics of benzoic acid. AlChE J. 2001, 47 (7), 1544-1560.
13 Lee, H. L.; Lin, H. Y.; Lee, T. Large-scale crystallization of a pure metastable polymorph by reaction coupling. Org. Process Res. Dev. 2014, 18 (4), 539-545.
14 De Beer, T. R. M.; Baeyens, W. R. G.; Ouyang, J.; Vervaetc, C.; Remonc, J. P. Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension. Analyst 2006, 131 (10), 1137-1144.
15 Wang, Z.; Wang, J.; Dang, L. Nucleation, growth, and solvated behavior of erythromycin as monitored in situ by using FBRM and PVM. Org. Process Res. Dev. 2006, 10 (3), 450-456.
16 Keurentjes, J. T. F.; Janssen, G. H. R.; Gorissen, J. J. The esterification of tartaric acid with ethanol: Kinetics and shifting the equilibrium by means of pervaporation. Chem. Eng. Sci. 1994, 49 (24), 4681-4689.
17 Rönnback, R.; Salmi, T.; Vuori, A.; Haario, H.; Lehtonen, J; Sundqvist, A.; Tirronen, E. Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst. Chem. Eng. Sci. 1997, 52 (19), 3369-3381.
18 Bedle, R. W.; Huhn, G. F.; Jensen, J. H.; Xing Y. Reaction kinetics of a condensation polymer between 1,10-dibromodecane and hexamethylenediamine: scale-up considerations. Org. Process Res. Dev. 1998, 2 (2), 105-110.
19 Yadav, G. D.; Thathagar, M. B. Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React. Funct. Polym. 2002, 52 (2), 99-110.
20 Lilja, J.; Murzin, D. Yu.; Salmi, T.; Aumoa, J.; Mäki-Arvela, P.; Sundell, M. Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation. J. Mol. Catal. A: Chem. 2002, 182-183, 555-563.
21 Sanz, M. T.; Murga, R.; Beltrán, S; Cabezas, J. L.; Coca, J. Kinetic study for the reactive system of lactic acid esterification with methanol: methyl lactate hydrolysis reaction. Ind. Eng. Chem. Res. 2004, 43 (9), 2049-2053.
22 Lopes, S.; Lapinskiab, L.; Fausto, R. Molecular structure and infrared spectra of dimethyl fumarate. Phys. Chem. Chem. Phys. 2002, 4 (16), 3965-3974.
23 Atal, S. S.; Atal, S. S. Dimethyl fumarate: a new oral treatment option for multiple sclerosis. Int. J. Basic Clin. Pharmacol. 2013, 2 (6), 849-856.
24 Guzowski, J.; Kiesman, W.; Irdam, E. Process for preparing high purity and crystalline dimethyl fumarate. US 2014/0200363 A1, Jul. 17, 2014
25 Anastas, P. T.; Kirchhoff, M. M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 2002, 35 (9), 686-694.
26 Roa Engel, C. A.; Straathof, A. J. J.; Zijlmans, T. W.; van Gulik, W.M.; van der Wielen, L. A. M. Fumaric acid production by fermentation. Appl. Microbiol. Biotechnol. 2008, 78 (3), 379-389.
27 Ehlinger, V. M.; Gabriel, K. J.; Noureldin, M. M. B.; El-Halwagi, M. M. Process design and integration of shale gas to methanol. ACS Sustainable Chem. Eng. 2014, 2 (1), 30-37.
28 Hallett, J.; Mason, B. J. The influence of temperature and supersaturation on the habit of ice crystals grown from the vapour. Proc. R. Soc. London, Ser. A 1958, 247 (1251), 440-453.
29 Qiu, J.; Weng, B.; Zhao, L.; Chang, C.; Shi, Z.; Li, X.; Kim, H.-K.; Hwang, Y.-H. Synthesis and characterization of flower-like bundles of ZnO nanosheets by a surfactant-free hydrothermal process. J. Nanomater. 2014, 281461.
30 Woo, X. Y.; Tan, R. B. H.; Chow, P. S.; Braatz, R. D. Simulation of mixing effects in antisolvent crystallization using a coupled CFD-PDF-PBE approach. Cryst. Growth Des. 2006, 6 (6), 1291-1303.
31 Randolph, A. D.; Larson, M. Theory of Particulate Processes, 2nd ed.; Academic Press: San Diego, CA, 1988; pp. 50-79.
32 Tanrmkulu, S. Ü.; Eroğlu, İ.; Bulutcu, A. N.; Özkar, S. Crystallization kinetics of ammonium perchlorate in MSMPR crystallizer. J. Cryst. Growth 2000, 208 (1-4), 533-540.
33 Qiu, Y.; Rasmuson, Å. C. Nucleation and growth of succinic acid in a batch cooling crystallizer. AlChE J. 1991, 37 (9), 1293-1304.
34 Van Loon, L. L.; Allen, H. C. Methanol reaction with sulfuric acid: a vibrational spectroscopic study. J. Phys. Chem. B 2004, 108 (45), 17666-17674.
35 Fogler, H. S. Elements of Chemical Reaction Engineering, 3rd Ed.; Prentice Hall International Series, New York, 2000.
36 Matos, M. A. R.; Miranda, M. S.; Morais, V. M. F.; Liebman, J. F. Thermochemistry of (E)- and (Z)-disubstituted alkene species: a combined experimental and theoretical investigation of isomeric dimethyl fumarate and dimethyl maleate. Org. Biomol. Chem. 2003, 1 (16), 2930-2934.
37 Panyawong, S.; Devahastin, S. Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. J. Food Eng. 2007, 78 (1), 151-161.
38 Danesh, A.; Connell, S. D.; Davies, M. C.; Clive J. Roberts, C. J.; Saul J. B. Tendler, S. J. B.; Williams, P. M.; Wilkins, M. J. An in situ dissolution study of aspirin crystal planes (100) and (001) by atomic force microscopy. Pharm. Res. 2001, 18 (3), 299-303.
Chapter 4
1 Rönnback, R.; Salmi, T.; Vuori, A.; Haario, H.; Lehtonen, J; Sundqvist, A.; Tirronen, E. Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst. Chem. Eng. Sci. 1997, 52 (19), 3369-3381.
2 Yadav, G. D.; Thathagar, M. B. Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React. Funct. Polym. 2002, 52 (2), 99-110.
3 Lindenberg, C.; Krättli, M.; Cornel, J.; Mazzotti, M. Design and optimization of a combined cooling/antisolvent crystallization process. Cryst. Growth Des. 2009, 9 (2), 1124-1136.
4 Chung, S.H.; David L. Ma, D. L.; Braatz, R.D. Optimal seeding in batch crystallization. Can. J. Chem. Eng. 1999, 77 (3), 590-596.
5 Polster, C. S.; Cole,K. P.; Burcham, C.L.; Campbell, B. M.; Frederick, A. L.; Hansen, M. M.; Harding, M.; Heller, M. R.; Miller, M. T.; Phillips, J. L.; Pollock, P. M.; Zaborenko, N. Pilot-scale continuous production of LY2886721: amide formation and reactive crystallization. Org. Process Res. Dev. 2014, 18 (11), 1295-1309.
6 Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Continuous co-crystallization as a separation technology: the study of 1:2 co-crystals of phenazine-vanillin. Cryst. Growth Des. 2012, 12 (12), 5897-5907.