跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾正揚
Cheng-Yang Chung
論文名稱: 白光LED之YAG與氮化物螢光粉色彩表現之研究
The study of color performance of YAG and nitride phosphors for white light LED
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 發光二極體色彩螢光粉
外文關鍵詞: LED, Phosphor, Color
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們使用了藍光LED搭配綠色YAG與紅色氮化物螢光粉的混色方式,來進行白光LED的色彩分析。我們利用頻譜線性疊加的概念進行預測,實驗結果發現在低色溫時可得到較佳之NCC值。
    接著,我們討論白光LED在光色上的表現,首先進行白光LED之單色與雙色螢光粉的效率分析,結果發現冷色系白光之效率將優於暖色系白光LED。最後,利用已建立的螢光粉模型所設計之封裝體與線性疊加之預測,實際封裝出Ra大於95與極小空間色偏之白光LED。


    In this thesis, we study the color performance of white LEDs with green YAG phosphor and red nitride phosphor. We apply a linear spectrum model to predict the color coordinate of the white LED, and experimental results show that more accuracy can be obtained in LED of low correlated color temperature.
    Besides, we study the optical efficiency for white LEDs with single or double phosphors. We find that the optical efficiency for cool white LEDs is higher than that for warm white LEDs. Finally, we apply the linear model to simulate the optical and color behaviors of white LEDs with specific package. We then make LEDs with Ra larger than 95 and with extreme small spatial CCT deviation.

    目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 論文大綱 5 第二章 基本理論 7 2.1 光度學 7 2.2 色彩學 8 2.2.1 色度學 8 2.2.2 黑體輻射與色溫 14 2.2.3 演色性 18 2.2.4 混色原理與計算 22 2.3 螢光粉發光原理 23 第三章 藍光LED與雙色螢光粉色彩表現之分析 26 3.1 引言 26 3.2 螢光粉之輻射頻譜 26 3.3 色座標點混色之計算 28 3.4 白光頻譜之線性疊加計算與色彩表現之預測 29 3.5 混粉螢光粉之白光頻譜理論計算與實驗驗證 32 3.6 分層螢光粉之白光頻譜理論計算與實驗驗證 48 第四章 不同色溫與封裝型態之效率比較 52 4.1 引言 52 4.2 單色螢光粉於不同CCT下之討論與效率分析 52 4.2 雙色螢光粉之YAG與氮化物於不同CCT下的效率比較 57 第五章 高演色性與空間色彩均勻性封裝 63 第六章 結論 69 參考文獻 71 中英文名詞對照表 74

    參考文獻
    [1]A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, NewYork, 2002).
    [2]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M.O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
    [3]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
    [4]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [5]C. C. Yang, C. M. Lin, Y. Chen, Y. T. Wu, S. R. Chuang, S. F. Huand, and R. S. Liua, “Highly stable three-band white light from an InGaN-based blue lightemitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett. 90, 123503-12505 (2007).
    [6]T.F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, Us 6686676 B2,(2004).
    [7]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, Dec.7 (1999).
    [8]ENERGY STAR, http://www.energystar.gov/index.cfm?c=ssl_res.pt_ssl/.
    [9]R. J. Xiea, N. Hirosak, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101-191103 (2007).
    [10]J. P. You, N. T. Tran and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Exp. 18, 5055-5060 (2010).
    [11]N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R. J. Xie, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109-051111 (2007).
    [12]M. R. Krames, J. Bhat, D. Collins, N. F. Gardner, W. Gotz, C. H. Lowery, M.Ludowise, P. S. Martin, G. Mueller, R. Mueller-Mach, S. Rudaz, D. A. Steigerwald, S. A. Stockman, and J. J. Wierer, “High-power III-Nitride emitters for solid-statelighting,” Phys. Stat. Sol. (a) 192, 237-245 (2002).
    [13]Lumileds, http://www.philipslumileds.com/.
    [14]C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Exp. 16, 20060-20066 (2008).
    [15]G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley and Sons, nc.,Danvers, 1982).
    [16]Commission Internationale de l’Eclairage, “CIE 1988 2° spectral luminous efficiency functions of photopic vision,” Pub. No. 86, (1988).
    [17]Colour & Vision database, http://cvision.ucsd.edu/.
    [18]Wikipedia, http://en.wikipedia.org.
    [19]大田登,基礎色彩再現工程,全華科技圖書公司,中華民國九十四年。
    [20]E. F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, 2003).
    [21]D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32(5), 247–274 (1942).
    [22]American National Standards Institute, http://www.ansi.org/.
    [23]D. B. Judd, D. L. Macadam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031-1036(1964).
    [24]Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, (1995).
    [25]劉如熹、劉宇恒,發光二極體用氧氮螢光粉介紹,全華科技圖書公司,中華民國九十四年。
    [26]Shimizu et al., “Light emitting device having a nitride compound semiconductor and a phosphor coating a garnet fluorescent material,” United States Patent, US5998925 A(1999).
    [27]M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors,” MJPS 4, 347-356 (2005).
    [28]K. Ishida, I. Mitsuishi, Y. Hattori, and S. Nunoue, "A revised Kubelka–Munk theory for spectral simulation of phosphor-based white light-emitting diodes," Appl. Phys. Lett. 93, 241910-241912(2008).
    [29]C. H. Tsaoa, E. R. Frenierea, L. Smith, “Improved predictive modeling of white LEDs with accurate luminescence simulation and Mechanical Design Software,” Proc. of SPIE 7231, 723111:1-12(2009).
    [30]M. Zachau, D. Becker, D. Berben, T. Fiedler, F. Jermann and F. Zwaschka, “Phosphors for Solid State Lighting,” Proc. of SPIE 6910, 691010:1-8(2009).
    [31]Nguyen T. Tran and Frank G. Shi, “Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes,” Journal of Lightwave Technology, 26, 3556-3559 (2008).
    [32]J. C. Mello, H. F. Wittmann, and R. H. Friend, “An Improved Experimental Determination of External Photoluminescence Quantum Efficiency,” Adv. Mater. 9, 230-232(1997).
    [33]何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
    [34]陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電所碩士論文,中華民國九十七年。
    [35]Breault Research Organization, http://www.breault.com/.
    [36]S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
    [37]M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, “Advanced Topics in Source Modeling,” Proc. SPIE 4775, 46-57 (2002).
    [38]Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
    [39]A. Borbely and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
    [40]A. Doicu and T. Wriedt, “Equivalent refractive index of a sphere with multiple spherical inclusions,” Appl. Opt. 3, 204-209 (2001).
    [41]D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
    [42]C. F. Boren and D. R. Huffmarn, Absorption and scattering of Light by Small Particles (Wiley, 1983).
    [43]孫慶成,螢光粉模型與LED光色的控制,2010 LED固態照明研討會,中華民國九十九年。

    QR CODE
    :::