跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝皓倫
Hao-Lun Hsieh
論文名稱: 高品質環型共振腔之光損耗分析
Study of loss in high-Q ring resonators
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 環型共振腔波導
外文關鍵詞: waveguides, ring resonators
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中以耦合波理論(coupled mode theory)與環型共振腔模型出發,設計一有較長耦合長度的滑輪式環形共振腔(pulley type ring resonator),並以有限時域差分法(finite-difference time-domain methods, FDTD)模擬電磁波在共振腔中傳播情形,研究單一載波波導、add & drop system與滑輪式環型共振腔的光侷限能力。發現滑輪式環型共振腔具有較高的Q值,也就是有較好的光侷限能力,之後以光能量偵測器以及波印庭向量去分析共振腔之光損耗,找到光損耗最大位置,並將光損耗分為來自外圍波導與環的模態不匹配,能量不完全耦合之耦合損耗以及能量在波導傳播時的彎曲損耗。最後模擬一理想環型共振腔,其能量由外圍波導完全耦合至環內,其Q值可以提高近十倍。


    In this study, the coupled mode theory is used to develop the pulley type ring resonator, in which the coupling length is longer than that of the conventional ring resonators. The finite-difference time-domain methods (FDTD) are used to solve the Maxwell’s equations in time domain. The electromagnetic field distribution (EMF) can be obtained by the FDTD method inside and outside the ring resonator.
    We analyzed the EMF distributions to observe the loss of the single waveguide ring resonator, add & drop system, and pulley type ring resonator. The result shows that the quality factor of the pulley type ring resonator is higher than the quality factor of other types. The Poynting vector and the power distribution of the pulley-type ring resonator have also been calculated. We investigated the originality of the loss. This can help to optimize the Q factor of the ring resonators.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 序論 1 1.1 共振腔簡介 1 1.2 積體式環型共振腔發展回顧 4 1.3 研究動機 8 1.4 結論 10 第二章 理論與模擬方法 12 2.1 耦合波理論 (Coupled mode theory) 12 2.2 環型共振腔之理論與模型建構 18 2.3有限時域差分法 (Finite-difference time-domain methods, FDTD) 23 2.4品質因子計算 28 2.5 結論 29 第三章 高品質因子環型共振腔設計 30 3.1 高品質環型共振腔設計 30 3.2 共振波長計算 32 3.3 Q值計算 34 3.4 不同環型共振腔之Q值比較 35 3.5 結論 38 第四章 高品值環型共振腔損耗分析 39 4.1 光損耗來源分析 39 4.2 利用光能量偵測器分析外圍損耗 44 4.3 利用波印庭向量分析光損耗 49 4.4 結論 53 第五章 結論與未來展望 54 參考文獻 56

    [1] C. Manolatou, “Passive components for dense optical integration based on high index-contrast,” Ph.D. Thesis MIT EECS (2001)
    [2] P. R. Berman, “Cavity quantum electrodynamics,” Academy (1994)
    [3] O. J. Painter, A. Husain, A. Scherer, J. D. O''Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol.17, 2082 (1999)
    [4] B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A.Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B. 15, 1155 (1998)
    [5] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic band-Gap defect mode laser,” Science 284, 1819 (1999)
    [6] O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126 (2000)
    [7] J. Faist, “Quantum cascade disk lasers,” Appl. Phys. Lett 69, 2456 (1996)
    [8] T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808 (1997)
    [9] A.Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9,919 (1973)
    [10] E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Technol. J. 48,2103 (1969)
    [11] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Technol. J. 48, 2071 (1969)
    [12] D. Rafizadeh, “Experimental realization of nanofabricated semiconductor waveguide-coupled microcavity ring and disk optical resources,” Ph.D. Thesis NU (1997)
    [13] D. Rafizadeh , J.P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, and S. T. Ho, “Temperature tuning of microcavity ring and disk resonators at 1.5 ?m,” Proc. IEEE LEOS Annu. Meet. 2, 162 (1997)
    [14] R. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and diskresonators with high finesse and 21.6nm free spectral range,” Opt. Lett. 22, 1244 (1997)
    [15] S. Hagness, “FDTD computational electromagnetics modeling of microcavity lasers and resonant optical structures,” Ph.D. Thesis NU (1998)
    [16] P. P. Absil, “ Microring resonators for wavelength division multiplexing and integrated photonics applications,” Ph.D. Thesis UMCP (2000)
    [17] P. P. Absil, J.V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554 (2000)
    [18] P. P. Absil, J.V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, ”Compact microring notch filters, “IEEE Photon.Technol. Lett.12, 398 (2000)
    [19] S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “CH4-based dry etching of high Q InP microdisks, ” J. Vac. Sci. Technol. B 20, 301 (2002)
    [20] S. J. Choi, K Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk laser vertically coupled to output waveguides,” Proc. ISLC 2002, Paper ThB6 (2002)
    [21] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Active semiconductor microdisk devices,” IEEE J. Lightwave Technol. 20, 105 (2002)
    [22] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches,” Appl. Phys. Lett. 80, 3467 (2002)
    [23] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “High-Q vertically coupled InP microdisk resonators,” IEEE Photon. Technol. Lett. 14, 331 (2002)
    [24] K.Djordjev, S. J.Choi, S. J.Choi, and P. D. Dapkus, “Microdisk tunable resonantfilters and switches,” IEEE Photon. Technol. Lett. 14, 828 (2002)
    [25] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators,” IEEE J. Lightwave Technol. 20, 1485 (2002)
    [26] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Vertically coupled InP microdisk switching devices with electroabsorptive active regions,” IEEE Photon. Technol. Lett. 14, 1115 (2002)
    [27] D. G. Rabus, “Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP/InP,” Der Andere Verlag (2002)
    [28] R. Grover, T. A. Ibrahim, , T. N. Ding, Y. Leng, L. C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P. T. Ho, “Laterally coupled InP-based singlemode micro racetrack notch filter,” IEEE Photon. Technol. Lett. 15, 1082 (2003)
    [29] T. A. Ibrahim, “Nonlinear optical semiconductor micro ring resonators,” Ph.D. Thesis UMC (2003)
    [30] A. Leinse, “Polymeric microring resonator based electro optic modulator,” Ph.D. Thesis UT (2005)
    [31] F.Tan, ”Integrated optical filters based on microring resonators,” Ph.D. Thesis UT (2004)
    [32] D. Geuzebroek, “Flexible optical network components based on densely integrated microring resonators,” Ph.D. Thesis UT (2005)
    [33] K. R. Hiremath, “Coupled mode theory based modelling and analysis of circular optical microresonators,” Ph.D. Thesis UT (2005)
    [34] T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346 (2004)
    [35] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431,1081 (2004)
    [36] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325 (2005).
    [37] K.Hattori, T. Kitagawa, M. Oguma, Y. Hibino, Y. Ohmori, and M.Horiguchi, “Er-doped silica-based planar ring resonator,” Electron. Commun. Jpn II 77, 62 (2007)
    [38] H. K. Hsiao , and K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15, No. 26 17797 (2007)
    [39] L. Guo, B. Shi, C. Chen, H. Lv, Z. Zhao, and M. Zhao, “Optimal design and fabrication of ring resonator composed of Ge02 -doped silica waveguides for IOG,” Proc. of SPIE 7381, 73810Q-6 (2009)
    [40] R. M. Briggs, M. Shearn, A. Scherer, and H. A. Atwater, “Wafer-bonded single-crystal silicon slot waveguides and ring resonators,” Appl. Phys. Lett. 94, 021106 (2009)
    [41] L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. of SPIE 7604 ,760406-10 (2010)
    [42] X. Zhang, C. Ji, T. Zhang, and Y. Cui, “Analysis of ring resonator of integrated optical waveguide gyroscope,” Proc. of SPIE 6722 , 67222M-6 (2007)
    [43] T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experiment developments in the RFOG,” Fiber Optic and Laser Sensors VIII, SPIE 1367, 121 (1990)
    [44] C. Monovoukas, A. K. Swiecki, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” IntelliSense Corporation (2000)
    [45] Z. Zhen, Y. Xin, and C. Cheng, “Method for signal detection of integrated optic gyroscope based on digital signal processing”, Proc. of SPIE 7282 ,72822X-6 (2009)
    [46] Y. Chen, H. Ma, and Z. Jin, “Offset errors caused by the resonance asymmetry in the waveguide-type optical passive resonator gyro,” Proc. of SPIE 7753, 77531K-4 (2011)
    [47] H. Ma1, Z. He1, and K. Hotate, “Sensitivity improvement of waveguide-type optical passive ring resonator gyroscope by carrier suppression,” Proc. of SPIE 7503, 750353-4 (2009)
    [48] H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 8 (2006)
    [49] M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678 (2005)
    [50] D. X. Xu, A. Densmore, A. Delage, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137 (2008)
    [51] T. F. Krauss, R. M. De La Rue, “Photonic crystals in the optical regime past, present and future,” J. Quantum Electron. 23, 51 (1999)
    [52] 中央大學光電所應用光子實驗室http://apl.dop.ncu.edu.tw
    [53] G. P. Agrawal, “Fiber-optics communication system,” John Wiley &Sons (2002)
    [54] M. F. Yanik, H. Altug, J. Vuckovic, and S. Fan, “Submicrometer all-optical digital memory and integration of nanoscale photonic devices without isolators,” J. Lightwave Technol. 22, 2316 (2004)
    [55] U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415, 406 (2002)
    [56] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995)
    [57] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82, 5229 (1999)
    [58] D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk1, “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation,” Phys. Rev. Lett. 83, 1767 (1999)
    [59] L. Vestergaard Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594 (1999)
    [60] R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71, 053811 (2005)
    [61] J. Cheng, S. Han, and Y. J. Yan, “Transverse localization and slow propagation of light,” Phys. Rev. A 72, 021801 (2005)
    [62] S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, and D. V. Kupriyanov, “Alignment dynamics of slow light diffusion in ultracold atomic 85Rb,” Phys. Rev. A 72, 051402 (2005)
    [63] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,“ Science, 290, 2282 (2000)
    [64] P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654 (2004)
    [65] M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002)
    [66] J. P. Reithmaler, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature, 432, 197 (2004)
    [67] M. F. Yanik,W. Suh, Z.Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004)
    [68] A. Yu. Petrova, and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866 (2004)
    [69] M. F. Yanik, and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004)
    [70] M. F. Yanik, and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005)
    [71] D. Mori, and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101 (2004)
    [72] M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466 (2004)
    [73] G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, E. Fazio, C. M. Bowden, and M. J. Bloemer, “Slowing light in x2 photonic crystals,” Phys. Rev. E 68, 046613 (2003)
    [74] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001)
    [75] N. Molla, and G. L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322 (2004)
    [76] H. Altuga , and J. Vuekovia, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005)
    [77] D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398 (2005)
    [78] Y. A. Vlasov, M. O’Boyle, H F. Hamann1, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65 (2005)
    [79] H. Kang, G. Hernandez, and Y. Zhu, “Superluminal and slow light propagation in cold atoms,” Phys. Rev. A, 70, 011801 (2004)
    [80] K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. LT4, 645 (1986)
    [81] K. Hotate, and M. Murakami, “Drift of an optical passive ring-resonator gyro caused by the Faraday effect,” Proc. of OFS 5, New Orleans, 405 (1988)
    [82] H. L. Hsieh, C.C. Chen, “Design of Micro Ring Resonator to improve Q factor,” OPT (2010)
    [83] H. L. Hsieh, C.C. Chen, “Study of loss in micro ring resonator,” IPC (2011)
    [84] D. G. Rabus, “Integrated ring resonator:the compendium,” chapter 2,3 Springer (2007)
    [85] RSoft Inc.,”FullWAVE3.0.1 User Guide,”
    [86] B. Howley, X. Wang, R.T. Chen, and Y. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys. 100, 023114 (2006)
    [87] 簡宏達,”二維雙輸入雙輸出光子晶體分光器,”M.S.Thesis, NCU (2004)

    QR CODE
    :::