跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳亭均
Ting-Chun Chen
論文名稱: 無電鍍Ni-P與p型Bi0.4Sb1.6Te3材料之界面反應及熱電性質探討
指導教授: 吳子嘉
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 熱電材料Ni-P擴散阻障層熱電性質
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗所使用的p型熱電材料Bi0.4Sb1.6Te3 (BST)是以spark plasma sintering的技術來製作。與傳統的熱電塊材相比,將材料球磨(ball milling)冶金後再使用spark plasma sintering製做的試片,因燒結時間的縮短,可保持材料的奈米結構,進而提升熱電材料的熱電轉換性質。但試片在燒結過程中會受到一持續的力,造成燒結試片在平行及垂直壓力方向平面有些許不同的結構出現。界面反應中Ni-P/BST系統經退火發現,Ni-P/BST∥反應生成的NiTe IMC生長速率常數較Ni-P/BST系統快,其原因為平行及垂直壓力方向平面擴散途徑的不同,使Ni-P/BST∥中的Ni更容易與Te反應生成NiTe IMC。
    BST材料的Seebeck係數在150 oC下退火,隨退火時間的增加並未出現明顯變化;但導電率卻隨退火時間而有上升再下降的趨勢。導電率變化主要受到載子濃度及遷移率所影響,載子遷移率的上升主導導電率的上升,而載子濃度的下降主導導電率的下降。另外,在Ni-P/BST/Ni-P系統中,Ni-P層對熱電材料的熱電性質也會有所影響。Ni-P層因提供大量的載子,使Ni-P/BST/Ni-P系統的有效Seebeck係數大幅度下降;但在有效導電率方面卻因Bi precipitation出現所提供的載子而隨著退火時間上升。由Seebeck係數及導電率計算power factor後發現,Ni-P層的存在雖提升了導電率,但整體而言仍然對BST材料的熱電性質有負面影響。


    In this study, p-type Bi0.4Sb1.6Te3 (BST) thermoelectric material was fabricated by ball-milling and spark plasma sintering (SPS) technique. Comparing to the conventional technique samples, SPS thermoelectric materials show significant improvement of thermoelectric figure of merit (ZT) due to small grain size. The samples were surf an external compressing force during the sintering process. Thus, the structure of the surface parallel to compressing direction differed from the surface perpendicular to compressing direction. In interfacial reaction, the growth rate constant of NiTe IMC in Ni-P/BST∥ system in all aging condition were larger than in Ni-P/BST system because of the different diffusion paths of these two system.
    The Seebeck coefficient of BST at 150 oC aging had no obvious change with aging time. However, the conductivity increased in short time aging then decreased in long time aging. The variation of the conductivity was mainly due to the change of carrier concentration and carrier mobility, therefore, the increase of carrier mobility dominant the increase of conductivity and the decrease of carrier concentration dominant the decrease of conductivity. On the other hand, the electroless Ni-P layer also affect the thermoelectric performance of BST material. Ni-P layer provided large amount of carrier to lower the effective Seebeck coefficient in Ni-P/BST/Ni-P system. But the increase of the carrier concentration effectively increased the effective conductivity in Ni-P/BST/Ni-P system. The calculation of the power factor showed that the Ni-P layer truly decrease the electrical transport properties of BST thermoelectric material.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 序論 1 1-1 前言 1 1-2 熱電轉換原理 1 1-2-1 Seebeck效應 2 1-2-2 Peltier效應 3 1-2-3 Thomson效應 3 1-3 熱電優值 (ZT) 4 1-4 熱電模組之銲點 6 1-5 熱電材料之熱電性質 6 1-5-1 Bi2Te3-based奈米熱電材料 7 1-5-2 Bi2Te3-based熱電材料的微結構及熱處理對熱電性質的影響 10 1-6 界面反應 14 1-6-1 銲料與熱電基材的界面反應 15 1-6-2 擴散阻障層與熱電基材的界面反應 19 1-7 無電鍍鎳磷 23 1-7-1 無電鍍原理 23 1-7-2 無電鍍液組成 23 1-7-3 無電鍍鎳的微結構 25 1-8 研究動機 26 第二章 實驗方法 27 2-1 材料製備 27 2-2 無電鍍Ni-P 28 2-3 Ni-P/ BST 擴散偶之界面反應 28 2-4 熱電性質量測之試片製作 29 2-5 試片分析 30 2-5-1 掃描式電子顯微鏡 (SEM) 30 2-5-2 電子微探分析儀 (EPMA) 31 2-5-3 X-Ray繞射儀 (XRD) 31 2-5-4 導電率量測方法 32 2-5-5 Seebeck係數量測方法 32 2-5-6 Hall量測 33 第三章 結果與討論 34 3-1 無電鍍Ni-P與BST基材之界面反應 34 3-1-1 BST材料平行與垂直壓力方向平面之結構 34 3-1-2 Ni-P/BST∥與Ni-P/BST之NiTe生長動力學 35 3-1-3 Ni-P/BST界面之介金屬化合物 41 3-2 BST材料之熱電性質 43 3-2-1退火對BST熱電性質的影響 44 3-2-2無電鍍Ni-P層的影響 48 3-2-3 Power factor 55 第四章 結論 56 參考文獻 58

    1. Z.G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge”, Progress in Natural Science: Materials International, 22 (2012) 535-549.
    2. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy & Environmental Science, 2 (2009) 466.
    3. D.M. Lee, C.H. Lim, D.C. Cho, Y.S. Lee, C.H. Lee, “Effects of annealing on the thermoelectric and microstructural properties of deformed n-type Bi2Te3-based compounds”, Journal of Electronic Materials, 35 (2006) 360-365.
    4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys”, Science, 320 (2008) 634-638.
    5. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, “Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks”, Nano Letters, 8 (2008) 2580-2584.
    6. Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, “Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride”, Nano Letters, 9 (2009) 1419-1422.
    7. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z.F. Ren, “Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3”, Nano Letters, 10 (2010) 3373-3378.
    8. C. Euvananont, N. Jantaping, C. Thanachayanont, “Effects of composition and preferred orientation on microstructure and thermoelectric properties of p-type (BixSb(1−x))2Te3 alloys”, Current Applied Physics, 11 (2011) S246-S250.
    9. H.C. Kim, T.S. Oh, D.B. Hyun, “Thermoelectric properties of the p-type Bi2Te3–Sb2Te3–Sb2Se3 alloys fabricated by mechanical alloying and hot pressing”, Journal of Physics and Chemistry of Solids, 61 (2000) 743-749.
    10. N. Keawprak, Z.M. Sun, H. Hashimoto, M.W. Barsoum, “Effect of sintering temperature on the thermoelectric properties of pulse discharge sintered (Bi0.24Sb0.76)2Te3 alloy”, Journal of Alloys and Compounds, 397 (2005) 236-244.
    11. J. Jiang, L. Chen, S. Bai, Q. Yao, Q. Wang, “Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering”, Materials Science and Engineering: B, 117 (2005) 334-338.
    12. L.D. Zhao, B.P. Zhang, W.S. Liu, H.L. Zhang, J.F. Li, “Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering”, Journal of Alloys and Compounds, 467 (2009) 91-97.
    13. S.W. Chen, C.N. Chiu, “Unusual cruciform pattern interfacial reactions in Sn/Te couples”, Scripta Materialia, 56 (2007) 97-99.
    14. C.N. Chiu, C.H. Wang, S.W. Chen, “Interfacial Reactions in the Sn-Bi/Te Couples”, Journal of Electronic Materials, 37 (2007) 40-44.
    15. C.N. Liao, C.H. Lee, “Suppression of vigorous liquid Sn/Te reactions by Sn–Cu solder alloys”, Journal of Materials Research, 23 (2011) 3303-3308.
    16. C.N. Liao, Y.C. Huang, “Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium”, Journal of Materials Research, 25 (2011) 391-395.
    17. C.H. Lee, W.T. Chen, C.N. Liao, “Effect of antimony on vigorous interfacial reaction of Sn–Sb/Te couples”, Journal of Alloys and Compounds, 509 (2011) 5142-5146.
    18. Y.C. Lan, D.Z. Wang, G. Chen, Z.F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3and n-type Bi2(Te,Se)3 thermoelectric materials”, Applied Physics Letters, 92 (2008) 101910.
    19. O.D. Iyore, T.H. Lee, R.P. Gupta, J.B. White, H.N. Alshareef, M.J. Kim, B.E. Gnade, “Interface characterization of nickel contacts to bulk bismuth tellurium selenide”, Surface and Interface Analysis, 41 (2009) 440-444.
    20. T.Y. Lin, C.N. Liao, A.T. Wu, “Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials”, Journal of Electronic Materials, 41 (2011) 153-158.
    21. W.P. Lin, D.E. Wesolowski, C.C. Lee, “Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules”, Journal of Materials Science: Materials in Electronics, 22 (2011) 1313-1320.
    22. C.Y. Ko, A.T. Wu, “Evaluation of Diffusion Barrier Between Pure Sn and Te”, Journal of Electronic Materials, 41 (2012) 3320-3324.
    23. K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, P.M. Kavimani, “An overall aspect of electroless Ni-P depositions—A review article”, Metallurgical and Materials Transactions A, 37 (2006) 1917-1926.
    24. H. Okamoto, “Ni-P (nickel-phosphorus)”, JPE, 21 (2000) 210-210.
    25. Z. Starý, J. Horák, M. Stordeur, M. Stölzer, “Antisite defects in Sb2−xBixTe3 mixed crystals”, Journal of Physics and Chemistry of Solids, 49 (1988) 29-34.
    26. T. Plechacek, J. Navratil, J. Horak, D. Bachan, A. Krejcova, P. Lostak, “Point and structural defects in Bi2PbxTe3 single crystals”, Solid State Ionics, 177 (2007) 3513-3519.
    27. H. Okamoto, “Bi-Ni (Bismuth-Nickel)”, Journal of Phase Equilibria and Diffusion, 29 (2008) 203
    28. H. Okamoto, “Ni-Sb (Nickel-Antimony)”, Journal of Phase Equilibria and Diffusion, 30 (2009) 301-302.
    29. C.K. Hu, Electromigration failure mechanisms in bamboo-grained Al(Cu) interconnections, Thin Solid Films, 260 (1995) 124-134.
    30. K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, Journal of Applied Physics, 94 (2003) 5451-5473.

    QR CODE
    :::