| 研究生: |
彭新勝 Hsin-Sheng Peng |
|---|---|
| 論文名稱: |
車輛底盤懸吊與傳動軸整體構件最佳化之振動分析 |
| 指導教授: |
王有任
Yu-Zane Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 底盤懸吊系統 、傳動軸 、最佳化設計 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主旨在於探討模擬車輛模組懸吊系統避震器阻尼特性之最佳化設計,以使車輛模組在兼顧操控性與行車安全的要求下,且能達到駕駛與乘座者最舒適的境界。
本文所考慮的駕駛狀況有凸起路況及普通路面、惡劣路面,而分別以二維左右對稱及三維獨立四輪懸吊與中央傳動軸之模擬車輛模組來建構,並以數值的方法來探討懸吊系統避震器阻尼對於車輛模組動態反應之影響,再以車體垂直加速度為目標函數、車輪動態負荷比與車體俯仰角位移為限制函數,進行整體車輛模組構件之最佳化分析; 以求得於上述駕駛狀況下,可使車輛最具舒適性與操控性且確保行車安全之懸吊系統避震器阻尼參數值。
由前述駕駛狀況所求得最佳懸吊避震器阻尼之參數,可依避震器活塞衝程的大小,而將阻尼特性曲線分成兩組:一組以操控性與駕馭為設計要求,適用於惡劣路面等駕駛狀況;另一組則以舒適性為設計訴求,適用於普通路面與凸起路況等駕駛狀況。
車輛懸吊系統避震器阻尼於最佳化設計後,其於普通路面、惡劣路面與凸起路況等駕駛狀況下,車輛模組之舒適性可達滿意的結果。
1. Kamash, K. M. A. and Robson, J. D., “The Application of Isotropy in Road Sur- face,” Journal of Sound and Vibration, 54(1), pp. 131-145. 1977.
2. Lin, W. F., “Vehicle Vibration Analysis Using Frequency Domain Techniques,” Journal of Engineering for Industry, pp.1075-1080, Nov. 1969.
3. Kruse, D. F., Edwards, R. C., “Automotive Suspension Bumpers-A Correlation of Parameters Affecting Impact Response and a Technique for Achieving Effective Design,” SAE 680471.
4. Varterasian, J. H. and Thompson, R. R., “ The Dynamic Characteristics of Auto- mobile Seats with Human Occupants,” SAE Paper No. 770249, 1977.
5. Lu, X. P., Li, H. L., and Papalambros, P., “A Design Procedure for the Optimization of Vehicle Suspensions,” Int. J. of Vehicle Design Vol. 5nos 1/2 pp.129-142, 1984.
6. Guo, K. H., “Statistical Analysis of Vehicle Vibration and Dynamic Load, and Selection of Suspension Design Parameters,” Report No. UM-MEAM-82-15.
7. Wang, J. Y., Theory of Ground Vehicles, John Wiley and Sons, New York, 1978.
8. Guo, K. H., “ Statistical Analysis of Vehicle Vibration and Dynamic Load, and Selection of Suspension design Parameters,” The University of Michigan Report No. UM-MEAM-82-15, 1982.
9. Fukushima, N., Iida, M., Hidaka, K., “Development of an Automotive Shock Absorber that Improves Riding Comfort without Impairing steering Stability,” SAE Paper No.845052, 1984.
10. Dahlberg, T., “Comparison of Ride Comfort Criteria Computer Optimization of Vehicles Traveling on Randomly Profiled Roads,” Vehicle System Dynamic 9, pp.291-307, 1980.
10. Dahlberg, T., “Comparison of Ride Comfort Criteria Computer Optimization of Vehicles Traveling on Randomly Profiled Roads,” Vehicle System Dynamic 9, pp.291-307, 1980.
10. Dahlberg, T., “Comparison of Ride Comfort Criteria Computer Optimization of Vehicles Traveling on Randomly Profiled Roads,” Vehicle System Dynamic 9, pp.291-307, 1980.
13. Thomas K., Dempsey., and Leatherwood, J. D., “ Vibration Ride Comfort Criteria,” Vibr. 76-82, pp.260-266.
14. 陳昌本., “汽車在粗糙路面上行駛的動態研究,” 國立中央大學機械工程
研究所碩士論文, 73年5月.
15. Potter, R. A., Willmert, K. D., “Optimum design of Vehicle Suspension System,” ASME 73-DET-46.
16. Thompson, A. G., “Quadratic Performance Indices and Optimum Suspension Design,” Pro. Instn. Mech. Engrs., Vol. 187, pp.129-139, 1973.
17. Bender, E. K., Karnopp, D. C., and Paul, I. L., “On the Optimization of Vehicle Suspensions Using Random Process Theory,” ASME 67-TRANS-12.
18. Thompson, A. G., Pearce, C. E., “An Optimal Suspension for an Auto- mobile on
a Random Road,” SAE 790478.
a Random Road,” SAE 790478.
20. Thompson, A. G. “Suspension design for Optimum Road-Holding,” SAE. 830663.
21. Dahlberg, T., “Comparison of Ride Comfort Criteria Computer Optimization of Vehicles Traveling on Randomly Profiled Roads,” Vehicle System Dynamic 9 pp.291-307, 1980.
22. Fukushima, N., Hidaka, K., and Iwata, K., “Optimum Characteristics of Auto- motive Shock Absorbers Under Various Driving Conditions and Road Surfaces,” JSAM Review, pp.62-67, 1983.
23. LaBarre, R. P., Forbes, R. T., and Andres, S., “ The Measurement and Analysis of Road Surface Roughness,” Motor Industry Research Association Report No. 1970/5, 1970.
24. Dodds, C. J., and Robson, J. D., “The Description of Road Surface Roughness,” Journal of Sound and Vibration, Vol.31, No.2, pp.175-183, 1973.
25. Apetaur, M., “Remarks on the Theory of Vehicle Vibration Analysis Based on the On-the-Road Measurements,” Vehicle System Dynamics Vol. 11, pp.143-173, 1982.
26. Fletch, R., and Powell, M. J. D., “A Rapidly Convergent Descent Method for Mini- mization,” Computer J. 6(2) pp.163-168, 1963.
27. Guo, K. H., “Statistical Analysis of Vehicle Vibration and Dynamic Load, and Selec-
tion design Parameters,” Report No. UM-MEAM-82-15.
28. Thompson, A. G., “Quadratic Performance Indices and Optimum Suspension Design,” Pro. Instn. Mech. Engrs., Vol. 187, pp.129-139, 1973.
29. Potter, R. A., Willmert, K. D., “Optimum Design of Vehicle Suspension System,” ASME 73-DET-46.